Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
/*
 * Copyright 2014 Advanced Micro Devices, Inc.
 * Copyright 2008 Red Hat Inc.
 * Copyright 2009 Jerome Glisse.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 *
 */

#include <linux/firmware.h>
#include <linux/pm_runtime.h>

#include "amdgpu.h"
#include "amdgpu_gfx.h"
#include "amdgpu_rlc.h"
#include "amdgpu_ras.h"
#include "amdgpu_reset.h"
#include "amdgpu_xcp.h"
#include "amdgpu_xgmi.h"

/* delay 0.1 second to enable gfx off feature */
#define GFX_OFF_DELAY_ENABLE         msecs_to_jiffies(100)

#define GFX_OFF_NO_DELAY 0

/*
 * GPU GFX IP block helpers function.
 */

int amdgpu_gfx_mec_queue_to_bit(struct amdgpu_device *adev, int mec,
				int pipe, int queue)
{
	int bit = 0;

	bit += mec * adev->gfx.mec.num_pipe_per_mec
		* adev->gfx.mec.num_queue_per_pipe;
	bit += pipe * adev->gfx.mec.num_queue_per_pipe;
	bit += queue;

	return bit;
}

void amdgpu_queue_mask_bit_to_mec_queue(struct amdgpu_device *adev, int bit,
				 int *mec, int *pipe, int *queue)
{
	*queue = bit % adev->gfx.mec.num_queue_per_pipe;
	*pipe = (bit / adev->gfx.mec.num_queue_per_pipe)
		% adev->gfx.mec.num_pipe_per_mec;
	*mec = (bit / adev->gfx.mec.num_queue_per_pipe)
	       / adev->gfx.mec.num_pipe_per_mec;

}

bool amdgpu_gfx_is_mec_queue_enabled(struct amdgpu_device *adev,
				     int xcc_id, int mec, int pipe, int queue)
{
	return test_bit(amdgpu_gfx_mec_queue_to_bit(adev, mec, pipe, queue),
			adev->gfx.mec_bitmap[xcc_id].queue_bitmap);
}

int amdgpu_gfx_me_queue_to_bit(struct amdgpu_device *adev,
			       int me, int pipe, int queue)
{
	int bit = 0;

	bit += me * adev->gfx.me.num_pipe_per_me
		* adev->gfx.me.num_queue_per_pipe;
	bit += pipe * adev->gfx.me.num_queue_per_pipe;
	bit += queue;

	return bit;
}

bool amdgpu_gfx_is_me_queue_enabled(struct amdgpu_device *adev,
				    int me, int pipe, int queue)
{
	return test_bit(amdgpu_gfx_me_queue_to_bit(adev, me, pipe, queue),
			adev->gfx.me.queue_bitmap);
}

/**
 * amdgpu_gfx_parse_disable_cu - Parse the disable_cu module parameter
 *
 * @mask: array in which the per-shader array disable masks will be stored
 * @max_se: number of SEs
 * @max_sh: number of SHs
 *
 * The bitmask of CUs to be disabled in the shader array determined by se and
 * sh is stored in mask[se * max_sh + sh].
 */
void amdgpu_gfx_parse_disable_cu(unsigned int *mask, unsigned int max_se, unsigned int max_sh)
{
	unsigned int se, sh, cu;
	const char *p;

	memset(mask, 0, sizeof(*mask) * max_se * max_sh);

	if (!amdgpu_disable_cu || !*amdgpu_disable_cu)
		return;

	p = amdgpu_disable_cu;
	for (;;) {
		char *next;
		int ret = sscanf(p, "%u.%u.%u", &se, &sh, &cu);

		if (ret < 3) {
			DRM_ERROR("amdgpu: could not parse disable_cu\n");
			return;
		}

		if (se < max_se && sh < max_sh && cu < 16) {
			DRM_INFO("amdgpu: disabling CU %u.%u.%u\n", se, sh, cu);
			mask[se * max_sh + sh] |= 1u << cu;
		} else {
			DRM_ERROR("amdgpu: disable_cu %u.%u.%u is out of range\n",
				  se, sh, cu);
		}

		next = strchr(p, ',');
		if (!next)
			break;
		p = next + 1;
	}
}

static bool amdgpu_gfx_is_graphics_multipipe_capable(struct amdgpu_device *adev)
{
	return amdgpu_async_gfx_ring && adev->gfx.me.num_pipe_per_me > 1;
}

static bool amdgpu_gfx_is_compute_multipipe_capable(struct amdgpu_device *adev)
{
	if (amdgpu_compute_multipipe != -1) {
		DRM_INFO("amdgpu: forcing compute pipe policy %d\n",
			 amdgpu_compute_multipipe);
		return amdgpu_compute_multipipe == 1;
	}

	if (amdgpu_ip_version(adev, GC_HWIP, 0) > IP_VERSION(9, 0, 0))
		return true;

	/* FIXME: spreading the queues across pipes causes perf regressions
	 * on POLARIS11 compute workloads */
	if (adev->asic_type == CHIP_POLARIS11)
		return false;

	return adev->gfx.mec.num_mec > 1;
}

bool amdgpu_gfx_is_high_priority_graphics_queue(struct amdgpu_device *adev,
						struct amdgpu_ring *ring)
{
	int queue = ring->queue;
	int pipe = ring->pipe;

	/* Policy: use pipe1 queue0 as high priority graphics queue if we
	 * have more than one gfx pipe.
	 */
	if (amdgpu_gfx_is_graphics_multipipe_capable(adev) &&
	    adev->gfx.num_gfx_rings > 1 && pipe == 1 && queue == 0) {
		int me = ring->me;
		int bit;

		bit = amdgpu_gfx_me_queue_to_bit(adev, me, pipe, queue);
		if (ring == &adev->gfx.gfx_ring[bit])
			return true;
	}

	return false;
}

bool amdgpu_gfx_is_high_priority_compute_queue(struct amdgpu_device *adev,
					       struct amdgpu_ring *ring)
{
	/* Policy: use 1st queue as high priority compute queue if we
	 * have more than one compute queue.
	 */
	if (adev->gfx.num_compute_rings > 1 &&
	    ring == &adev->gfx.compute_ring[0])
		return true;

	return false;
}

void amdgpu_gfx_compute_queue_acquire(struct amdgpu_device *adev)
{
	int i, j, queue, pipe;
	bool multipipe_policy = amdgpu_gfx_is_compute_multipipe_capable(adev);
	int max_queues_per_mec = min(adev->gfx.mec.num_pipe_per_mec *
				     adev->gfx.mec.num_queue_per_pipe,
				     adev->gfx.num_compute_rings);
	int num_xcc = adev->gfx.xcc_mask ? NUM_XCC(adev->gfx.xcc_mask) : 1;

	if (multipipe_policy) {
		/* policy: make queues evenly cross all pipes on MEC1 only
		 * for multiple xcc, just use the original policy for simplicity */
		for (j = 0; j < num_xcc; j++) {
			for (i = 0; i < max_queues_per_mec; i++) {
				pipe = i % adev->gfx.mec.num_pipe_per_mec;
				queue = (i / adev->gfx.mec.num_pipe_per_mec) %
					 adev->gfx.mec.num_queue_per_pipe;

				set_bit(pipe * adev->gfx.mec.num_queue_per_pipe + queue,
					adev->gfx.mec_bitmap[j].queue_bitmap);
			}
		}
	} else {
		/* policy: amdgpu owns all queues in the given pipe */
		for (j = 0; j < num_xcc; j++) {
			for (i = 0; i < max_queues_per_mec; ++i)
				set_bit(i, adev->gfx.mec_bitmap[j].queue_bitmap);
		}
	}

	for (j = 0; j < num_xcc; j++) {
		dev_dbg(adev->dev, "mec queue bitmap weight=%d\n",
			bitmap_weight(adev->gfx.mec_bitmap[j].queue_bitmap, AMDGPU_MAX_COMPUTE_QUEUES));
	}
}

void amdgpu_gfx_graphics_queue_acquire(struct amdgpu_device *adev)
{
	int i, queue, pipe;
	bool multipipe_policy = amdgpu_gfx_is_graphics_multipipe_capable(adev);
	int max_queues_per_me = adev->gfx.me.num_pipe_per_me *
					adev->gfx.me.num_queue_per_pipe;

	if (multipipe_policy) {
		/* policy: amdgpu owns the first queue per pipe at this stage
		 * will extend to mulitple queues per pipe later */
		for (i = 0; i < max_queues_per_me; i++) {
			pipe = i % adev->gfx.me.num_pipe_per_me;
			queue = (i / adev->gfx.me.num_pipe_per_me) %
				adev->gfx.me.num_queue_per_pipe;

			set_bit(pipe * adev->gfx.me.num_queue_per_pipe + queue,
				adev->gfx.me.queue_bitmap);
		}
	} else {
		for (i = 0; i < max_queues_per_me; ++i)
			set_bit(i, adev->gfx.me.queue_bitmap);
	}

	/* update the number of active graphics rings */
	adev->gfx.num_gfx_rings =
		bitmap_weight(adev->gfx.me.queue_bitmap, AMDGPU_MAX_GFX_QUEUES);
}

static int amdgpu_gfx_kiq_acquire(struct amdgpu_device *adev,
				  struct amdgpu_ring *ring, int xcc_id)
{
	int queue_bit;
	int mec, pipe, queue;

	queue_bit = adev->gfx.mec.num_mec
		    * adev->gfx.mec.num_pipe_per_mec
		    * adev->gfx.mec.num_queue_per_pipe;

	while (--queue_bit >= 0) {
		if (test_bit(queue_bit, adev->gfx.mec_bitmap[xcc_id].queue_bitmap))
			continue;

		amdgpu_queue_mask_bit_to_mec_queue(adev, queue_bit, &mec, &pipe, &queue);

		/*
		 * 1. Using pipes 2/3 from MEC 2 seems cause problems.
		 * 2. It must use queue id 0, because CGPG_IDLE/SAVE/LOAD/RUN
		 * only can be issued on queue 0.
		 */
		if ((mec == 1 && pipe > 1) || queue != 0)
			continue;

		ring->me = mec + 1;
		ring->pipe = pipe;
		ring->queue = queue;

		return 0;
	}

	dev_err(adev->dev, "Failed to find a queue for KIQ\n");
	return -EINVAL;
}

int amdgpu_gfx_kiq_init_ring(struct amdgpu_device *adev, int xcc_id)
{
	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
	struct amdgpu_irq_src *irq = &kiq->irq;
	struct amdgpu_ring *ring = &kiq->ring;
	int r = 0;

	spin_lock_init(&kiq->ring_lock);

	ring->adev = NULL;
	ring->ring_obj = NULL;
	ring->use_doorbell = true;
	ring->xcc_id = xcc_id;
	ring->vm_hub = AMDGPU_GFXHUB(xcc_id);
	ring->doorbell_index =
		(adev->doorbell_index.kiq +
		 xcc_id * adev->doorbell_index.xcc_doorbell_range)
		<< 1;

	r = amdgpu_gfx_kiq_acquire(adev, ring, xcc_id);
	if (r)
		return r;

	ring->eop_gpu_addr = kiq->eop_gpu_addr;
	ring->no_scheduler = true;
	snprintf(ring->name, sizeof(ring->name), "kiq_%hhu.%hhu.%hhu.%hhu",
		 (unsigned char)xcc_id, (unsigned char)ring->me,
		 (unsigned char)ring->pipe, (unsigned char)ring->queue);
	r = amdgpu_ring_init(adev, ring, 1024, irq, AMDGPU_CP_KIQ_IRQ_DRIVER0,
			     AMDGPU_RING_PRIO_DEFAULT, NULL);
	if (r)
		dev_warn(adev->dev, "(%d) failed to init kiq ring\n", r);

	return r;
}

void amdgpu_gfx_kiq_free_ring(struct amdgpu_ring *ring)
{
	amdgpu_ring_fini(ring);
}

void amdgpu_gfx_kiq_fini(struct amdgpu_device *adev, int xcc_id)
{
	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];

	amdgpu_bo_free_kernel(&kiq->eop_obj, &kiq->eop_gpu_addr, NULL);
}

int amdgpu_gfx_kiq_init(struct amdgpu_device *adev,
			unsigned int hpd_size, int xcc_id)
{
	int r;
	u32 *hpd;
	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];

	r = amdgpu_bo_create_kernel(adev, hpd_size, PAGE_SIZE,
				    AMDGPU_GEM_DOMAIN_GTT, &kiq->eop_obj,
				    &kiq->eop_gpu_addr, (void **)&hpd);
	if (r) {
		dev_warn(adev->dev, "failed to create KIQ bo (%d).\n", r);
		return r;
	}

	memset(hpd, 0, hpd_size);

	r = amdgpu_bo_reserve(kiq->eop_obj, true);
	if (unlikely(r != 0))
		dev_warn(adev->dev, "(%d) reserve kiq eop bo failed\n", r);
	amdgpu_bo_kunmap(kiq->eop_obj);
	amdgpu_bo_unreserve(kiq->eop_obj);

	return 0;
}

/* create MQD for each compute/gfx queue */
int amdgpu_gfx_mqd_sw_init(struct amdgpu_device *adev,
			   unsigned int mqd_size, int xcc_id)
{
	int r, i, j;
	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
	struct amdgpu_ring *ring = &kiq->ring;
	u32 domain = AMDGPU_GEM_DOMAIN_GTT;

#if !defined(CONFIG_ARM) && !defined(CONFIG_ARM64)
	/* Only enable on gfx10 and 11 for now to avoid changing behavior on older chips */
	if (amdgpu_ip_version(adev, GC_HWIP, 0) >= IP_VERSION(10, 0, 0))
		domain |= AMDGPU_GEM_DOMAIN_VRAM;
#endif

	/* create MQD for KIQ */
	if (!adev->enable_mes_kiq && !ring->mqd_obj) {
		/* originaly the KIQ MQD is put in GTT domain, but for SRIOV VRAM domain is a must
		 * otherwise hypervisor trigger SAVE_VF fail after driver unloaded which mean MQD
		 * deallocated and gart_unbind, to strict diverage we decide to use VRAM domain for
		 * KIQ MQD no matter SRIOV or Bare-metal
		 */
		r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE,
					    AMDGPU_GEM_DOMAIN_VRAM |
					    AMDGPU_GEM_DOMAIN_GTT,
					    &ring->mqd_obj,
					    &ring->mqd_gpu_addr,
					    &ring->mqd_ptr);
		if (r) {
			dev_warn(adev->dev, "failed to create ring mqd ob (%d)", r);
			return r;
		}

		/* prepare MQD backup */
		kiq->mqd_backup = kzalloc(mqd_size, GFP_KERNEL);
		if (!kiq->mqd_backup) {
			dev_warn(adev->dev,
				 "no memory to create MQD backup for ring %s\n", ring->name);
			return -ENOMEM;
		}
	}

	if (adev->asic_type >= CHIP_NAVI10 && amdgpu_async_gfx_ring) {
		/* create MQD for each KGQ */
		for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
			ring = &adev->gfx.gfx_ring[i];
			if (!ring->mqd_obj) {
				r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE,
							    domain, &ring->mqd_obj,
							    &ring->mqd_gpu_addr, &ring->mqd_ptr);
				if (r) {
					dev_warn(adev->dev, "failed to create ring mqd bo (%d)", r);
					return r;
				}

				ring->mqd_size = mqd_size;
				/* prepare MQD backup */
				adev->gfx.me.mqd_backup[i] = kzalloc(mqd_size, GFP_KERNEL);
				if (!adev->gfx.me.mqd_backup[i]) {
					dev_warn(adev->dev, "no memory to create MQD backup for ring %s\n", ring->name);
					return -ENOMEM;
				}
			}
		}
	}

	/* create MQD for each KCQ */
	for (i = 0; i < adev->gfx.num_compute_rings; i++) {
		j = i + xcc_id * adev->gfx.num_compute_rings;
		ring = &adev->gfx.compute_ring[j];
		if (!ring->mqd_obj) {
			r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE,
						    domain, &ring->mqd_obj,
						    &ring->mqd_gpu_addr, &ring->mqd_ptr);
			if (r) {
				dev_warn(adev->dev, "failed to create ring mqd bo (%d)", r);
				return r;
			}

			ring->mqd_size = mqd_size;
			/* prepare MQD backup */
			adev->gfx.mec.mqd_backup[j] = kzalloc(mqd_size, GFP_KERNEL);
			if (!adev->gfx.mec.mqd_backup[j]) {
				dev_warn(adev->dev, "no memory to create MQD backup for ring %s\n", ring->name);
				return -ENOMEM;
			}
		}
	}

	return 0;
}

void amdgpu_gfx_mqd_sw_fini(struct amdgpu_device *adev, int xcc_id)
{
	struct amdgpu_ring *ring = NULL;
	int i, j;
	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];

	if (adev->asic_type >= CHIP_NAVI10 && amdgpu_async_gfx_ring) {
		for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
			ring = &adev->gfx.gfx_ring[i];
			kfree(adev->gfx.me.mqd_backup[i]);
			amdgpu_bo_free_kernel(&ring->mqd_obj,
					      &ring->mqd_gpu_addr,
					      &ring->mqd_ptr);
		}
	}

	for (i = 0; i < adev->gfx.num_compute_rings; i++) {
		j = i + xcc_id * adev->gfx.num_compute_rings;
		ring = &adev->gfx.compute_ring[j];
		kfree(adev->gfx.mec.mqd_backup[j]);
		amdgpu_bo_free_kernel(&ring->mqd_obj,
				      &ring->mqd_gpu_addr,
				      &ring->mqd_ptr);
	}

	ring = &kiq->ring;
	kfree(kiq->mqd_backup);
	amdgpu_bo_free_kernel(&ring->mqd_obj,
			      &ring->mqd_gpu_addr,
			      &ring->mqd_ptr);
}

int amdgpu_gfx_disable_kcq(struct amdgpu_device *adev, int xcc_id)
{
	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
	struct amdgpu_ring *kiq_ring = &kiq->ring;
	int i, r = 0;
	int j;

	if (adev->enable_mes) {
		for (i = 0; i < adev->gfx.num_compute_rings; i++) {
			j = i + xcc_id * adev->gfx.num_compute_rings;
			amdgpu_mes_unmap_legacy_queue(adev,
						   &adev->gfx.compute_ring[j],
						   RESET_QUEUES, 0, 0);
		}
		return 0;
	}

	if (!kiq->pmf || !kiq->pmf->kiq_unmap_queues)
		return -EINVAL;

	if (!kiq_ring->sched.ready || amdgpu_in_reset(adev))
		return 0;

	spin_lock(&kiq->ring_lock);
	if (amdgpu_ring_alloc(kiq_ring, kiq->pmf->unmap_queues_size *
					adev->gfx.num_compute_rings)) {
		spin_unlock(&kiq->ring_lock);
		return -ENOMEM;
	}

	for (i = 0; i < adev->gfx.num_compute_rings; i++) {
		j = i + xcc_id * adev->gfx.num_compute_rings;
		kiq->pmf->kiq_unmap_queues(kiq_ring,
					   &adev->gfx.compute_ring[j],
					   RESET_QUEUES, 0, 0);
	}
	/* Submit unmap queue packet */
	amdgpu_ring_commit(kiq_ring);
	/*
	 * Ring test will do a basic scratch register change check. Just run
	 * this to ensure that unmap queues that is submitted before got
	 * processed successfully before returning.
	 */
	r = amdgpu_ring_test_helper(kiq_ring);

	spin_unlock(&kiq->ring_lock);

	return r;
}

int amdgpu_gfx_disable_kgq(struct amdgpu_device *adev, int xcc_id)
{
	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
	struct amdgpu_ring *kiq_ring = &kiq->ring;
	int i, r = 0;
	int j;

	if (adev->enable_mes) {
		if (amdgpu_gfx_is_master_xcc(adev, xcc_id)) {
			for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
				j = i + xcc_id * adev->gfx.num_gfx_rings;
				amdgpu_mes_unmap_legacy_queue(adev,
						      &adev->gfx.gfx_ring[j],
						      PREEMPT_QUEUES, 0, 0);
			}
		}
		return 0;
	}

	if (!kiq->pmf || !kiq->pmf->kiq_unmap_queues)
		return -EINVAL;

	if (!adev->gfx.kiq[0].ring.sched.ready || amdgpu_in_reset(adev))
		return 0;

	if (amdgpu_gfx_is_master_xcc(adev, xcc_id)) {
		spin_lock(&kiq->ring_lock);
		if (amdgpu_ring_alloc(kiq_ring, kiq->pmf->unmap_queues_size *
						adev->gfx.num_gfx_rings)) {
			spin_unlock(&kiq->ring_lock);
			return -ENOMEM;
		}

		for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
			j = i + xcc_id * adev->gfx.num_gfx_rings;
			kiq->pmf->kiq_unmap_queues(kiq_ring,
						   &adev->gfx.gfx_ring[j],
						   PREEMPT_QUEUES, 0, 0);
		}
		/* Submit unmap queue packet */
		amdgpu_ring_commit(kiq_ring);

		/*
		 * Ring test will do a basic scratch register change check.
		 * Just run this to ensure that unmap queues that is submitted
		 * before got processed successfully before returning.
		 */
		r = amdgpu_ring_test_helper(kiq_ring);
		spin_unlock(&kiq->ring_lock);
	}

	return r;
}

int amdgpu_queue_mask_bit_to_set_resource_bit(struct amdgpu_device *adev,
					int queue_bit)
{
	int mec, pipe, queue;
	int set_resource_bit = 0;

	amdgpu_queue_mask_bit_to_mec_queue(adev, queue_bit, &mec, &pipe, &queue);

	set_resource_bit = mec * 4 * 8 + pipe * 8 + queue;

	return set_resource_bit;
}

static int amdgpu_gfx_mes_enable_kcq(struct amdgpu_device *adev, int xcc_id)
{
	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
	struct amdgpu_ring *kiq_ring = &kiq->ring;
	uint64_t queue_mask = ~0ULL;
	int r, i, j;

	amdgpu_device_flush_hdp(adev, NULL);

	if (!adev->enable_uni_mes) {
		spin_lock(&kiq->ring_lock);
		r = amdgpu_ring_alloc(kiq_ring, kiq->pmf->set_resources_size);
		if (r) {
			dev_err(adev->dev, "Failed to lock KIQ (%d).\n", r);
			spin_unlock(&kiq->ring_lock);
			return r;
		}

		kiq->pmf->kiq_set_resources(kiq_ring, queue_mask);
		r = amdgpu_ring_test_helper(kiq_ring);
		spin_unlock(&kiq->ring_lock);
		if (r)
			dev_err(adev->dev, "KIQ failed to set resources\n");
	}

	for (i = 0; i < adev->gfx.num_compute_rings; i++) {
		j = i + xcc_id * adev->gfx.num_compute_rings;
		r = amdgpu_mes_map_legacy_queue(adev,
						&adev->gfx.compute_ring[j]);
		if (r) {
			dev_err(adev->dev, "failed to map compute queue\n");
			return r;
		}
	}

	return 0;
}

int amdgpu_gfx_enable_kcq(struct amdgpu_device *adev, int xcc_id)
{
	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
	struct amdgpu_ring *kiq_ring = &kiq->ring;
	uint64_t queue_mask = 0;
	int r, i, j;

	if (adev->mes.enable_legacy_queue_map)
		return amdgpu_gfx_mes_enable_kcq(adev, xcc_id);

	if (!kiq->pmf || !kiq->pmf->kiq_map_queues || !kiq->pmf->kiq_set_resources)
		return -EINVAL;

	for (i = 0; i < AMDGPU_MAX_COMPUTE_QUEUES; ++i) {
		if (!test_bit(i, adev->gfx.mec_bitmap[xcc_id].queue_bitmap))
			continue;

		/* This situation may be hit in the future if a new HW
		 * generation exposes more than 64 queues. If so, the
		 * definition of queue_mask needs updating */
		if (WARN_ON(i > (sizeof(queue_mask)*8))) {
			DRM_ERROR("Invalid KCQ enabled: %d\n", i);
			break;
		}

		queue_mask |= (1ull << amdgpu_queue_mask_bit_to_set_resource_bit(adev, i));
	}

	amdgpu_device_flush_hdp(adev, NULL);

	DRM_INFO("kiq ring mec %d pipe %d q %d\n", kiq_ring->me, kiq_ring->pipe,
		 kiq_ring->queue);

	spin_lock(&kiq->ring_lock);
	r = amdgpu_ring_alloc(kiq_ring, kiq->pmf->map_queues_size *
					adev->gfx.num_compute_rings +
					kiq->pmf->set_resources_size);
	if (r) {
		DRM_ERROR("Failed to lock KIQ (%d).\n", r);
		spin_unlock(&kiq->ring_lock);
		return r;
	}

	kiq->pmf->kiq_set_resources(kiq_ring, queue_mask);
	for (i = 0; i < adev->gfx.num_compute_rings; i++) {
		j = i + xcc_id * adev->gfx.num_compute_rings;
		kiq->pmf->kiq_map_queues(kiq_ring,
					 &adev->gfx.compute_ring[j]);
	}
	/* Submit map queue packet */
	amdgpu_ring_commit(kiq_ring);
	/*
	 * Ring test will do a basic scratch register change check. Just run
	 * this to ensure that map queues that is submitted before got
	 * processed successfully before returning.
	 */
	r = amdgpu_ring_test_helper(kiq_ring);
	spin_unlock(&kiq->ring_lock);
	if (r)
		DRM_ERROR("KCQ enable failed\n");

	return r;
}

int amdgpu_gfx_enable_kgq(struct amdgpu_device *adev, int xcc_id)
{
	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
	struct amdgpu_ring *kiq_ring = &kiq->ring;
	int r, i, j;

	if (!kiq->pmf || !kiq->pmf->kiq_map_queues)
		return -EINVAL;

	amdgpu_device_flush_hdp(adev, NULL);

	if (adev->mes.enable_legacy_queue_map) {
		for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
			j = i + xcc_id * adev->gfx.num_gfx_rings;
			r = amdgpu_mes_map_legacy_queue(adev,
							&adev->gfx.gfx_ring[j]);
			if (r) {
				DRM_ERROR("failed to map gfx queue\n");
				return r;
			}
		}

		return 0;
	}

	spin_lock(&kiq->ring_lock);
	/* No need to map kcq on the slave */
	if (amdgpu_gfx_is_master_xcc(adev, xcc_id)) {
		r = amdgpu_ring_alloc(kiq_ring, kiq->pmf->map_queues_size *
						adev->gfx.num_gfx_rings);
		if (r) {
			DRM_ERROR("Failed to lock KIQ (%d).\n", r);
			spin_unlock(&kiq->ring_lock);
			return r;
		}

		for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
			j = i + xcc_id * adev->gfx.num_gfx_rings;
			kiq->pmf->kiq_map_queues(kiq_ring,
						 &adev->gfx.gfx_ring[j]);
		}
	}
	/* Submit map queue packet */
	amdgpu_ring_commit(kiq_ring);
	/*
	 * Ring test will do a basic scratch register change check. Just run
	 * this to ensure that map queues that is submitted before got
	 * processed successfully before returning.
	 */
	r = amdgpu_ring_test_helper(kiq_ring);
	spin_unlock(&kiq->ring_lock);
	if (r)
		DRM_ERROR("KGQ enable failed\n");

	return r;
}

/* amdgpu_gfx_off_ctrl - Handle gfx off feature enable/disable
 *
 * @adev: amdgpu_device pointer
 * @bool enable true: enable gfx off feature, false: disable gfx off feature
 *
 * 1. gfx off feature will be enabled by gfx ip after gfx cg gp enabled.
 * 2. other client can send request to disable gfx off feature, the request should be honored.
 * 3. other client can cancel their request of disable gfx off feature
 * 4. other client should not send request to enable gfx off feature before disable gfx off feature.
 */

void amdgpu_gfx_off_ctrl(struct amdgpu_device *adev, bool enable)
{
	unsigned long delay = GFX_OFF_DELAY_ENABLE;

	if (!(adev->pm.pp_feature & PP_GFXOFF_MASK))
		return;

	mutex_lock(&adev->gfx.gfx_off_mutex);

	if (enable) {
		/* If the count is already 0, it means there's an imbalance bug somewhere.
		 * Note that the bug may be in a different caller than the one which triggers the
		 * WARN_ON_ONCE.
		 */
		if (WARN_ON_ONCE(adev->gfx.gfx_off_req_count == 0))
			goto unlock;

		adev->gfx.gfx_off_req_count--;

		if (adev->gfx.gfx_off_req_count == 0 &&
		    !adev->gfx.gfx_off_state) {
			/* If going to s2idle, no need to wait */
			if (adev->in_s0ix) {
				if (!amdgpu_dpm_set_powergating_by_smu(adev,
						AMD_IP_BLOCK_TYPE_GFX, true, 0))
					adev->gfx.gfx_off_state = true;
			} else {
				schedule_delayed_work(&adev->gfx.gfx_off_delay_work,
					      delay);
			}
		}
	} else {
		if (adev->gfx.gfx_off_req_count == 0) {
			cancel_delayed_work_sync(&adev->gfx.gfx_off_delay_work);

			if (adev->gfx.gfx_off_state &&
			    !amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_GFX, false, 0)) {
				adev->gfx.gfx_off_state = false;

				if (adev->gfx.funcs->init_spm_golden) {
					dev_dbg(adev->dev,
						"GFXOFF is disabled, re-init SPM golden settings\n");
					amdgpu_gfx_init_spm_golden(adev);
				}
			}
		}

		adev->gfx.gfx_off_req_count++;
	}

unlock:
	mutex_unlock(&adev->gfx.gfx_off_mutex);
}

int amdgpu_set_gfx_off_residency(struct amdgpu_device *adev, bool value)
{
	int r = 0;

	mutex_lock(&adev->gfx.gfx_off_mutex);

	r = amdgpu_dpm_set_residency_gfxoff(adev, value);

	mutex_unlock(&adev->gfx.gfx_off_mutex);

	return r;
}

int amdgpu_get_gfx_off_residency(struct amdgpu_device *adev, u32 *value)
{
	int r = 0;

	mutex_lock(&adev->gfx.gfx_off_mutex);

	r = amdgpu_dpm_get_residency_gfxoff(adev, value);

	mutex_unlock(&adev->gfx.gfx_off_mutex);

	return r;
}

int amdgpu_get_gfx_off_entrycount(struct amdgpu_device *adev, u64 *value)
{
	int r = 0;

	mutex_lock(&adev->gfx.gfx_off_mutex);

	r = amdgpu_dpm_get_entrycount_gfxoff(adev, value);

	mutex_unlock(&adev->gfx.gfx_off_mutex);

	return r;
}

int amdgpu_get_gfx_off_status(struct amdgpu_device *adev, uint32_t *value)
{

	int r = 0;

	mutex_lock(&adev->gfx.gfx_off_mutex);

	r = amdgpu_dpm_get_status_gfxoff(adev, value);

	mutex_unlock(&adev->gfx.gfx_off_mutex);

	return r;
}

int amdgpu_gfx_ras_late_init(struct amdgpu_device *adev, struct ras_common_if *ras_block)
{
	int r;

	if (amdgpu_ras_is_supported(adev, ras_block->block)) {
		if (!amdgpu_persistent_edc_harvesting_supported(adev)) {
			r = amdgpu_ras_reset_error_status(adev, AMDGPU_RAS_BLOCK__GFX);
			if (r)
				return r;
		}

		r = amdgpu_ras_block_late_init(adev, ras_block);
		if (r)
			return r;

		if (amdgpu_sriov_vf(adev))
			return r;

		if (adev->gfx.cp_ecc_error_irq.funcs) {
			r = amdgpu_irq_get(adev, &adev->gfx.cp_ecc_error_irq, 0);
			if (r)
				goto late_fini;
		}
	} else {
		amdgpu_ras_feature_enable_on_boot(adev, ras_block, 0);
	}

	return 0;
late_fini:
	amdgpu_ras_block_late_fini(adev, ras_block);
	return r;
}

int amdgpu_gfx_ras_sw_init(struct amdgpu_device *adev)
{
	int err = 0;
	struct amdgpu_gfx_ras *ras = NULL;

	/* adev->gfx.ras is NULL, which means gfx does not
	 * support ras function, then do nothing here.
	 */
	if (!adev->gfx.ras)
		return 0;

	ras = adev->gfx.ras;

	err = amdgpu_ras_register_ras_block(adev, &ras->ras_block);
	if (err) {
		dev_err(adev->dev, "Failed to register gfx ras block!\n");
		return err;
	}

	strcpy(ras->ras_block.ras_comm.name, "gfx");
	ras->ras_block.ras_comm.block = AMDGPU_RAS_BLOCK__GFX;
	ras->ras_block.ras_comm.type = AMDGPU_RAS_ERROR__MULTI_UNCORRECTABLE;
	adev->gfx.ras_if = &ras->ras_block.ras_comm;

	/* If not define special ras_late_init function, use gfx default ras_late_init */
	if (!ras->ras_block.ras_late_init)
		ras->ras_block.ras_late_init = amdgpu_gfx_ras_late_init;

	/* If not defined special ras_cb function, use default ras_cb */
	if (!ras->ras_block.ras_cb)
		ras->ras_block.ras_cb = amdgpu_gfx_process_ras_data_cb;

	return 0;
}

int amdgpu_gfx_poison_consumption_handler(struct amdgpu_device *adev,
						struct amdgpu_iv_entry *entry)
{
	if (adev->gfx.ras && adev->gfx.ras->poison_consumption_handler)
		return adev->gfx.ras->poison_consumption_handler(adev, entry);

	return 0;
}

int amdgpu_gfx_process_ras_data_cb(struct amdgpu_device *adev,
		void *err_data,
		struct amdgpu_iv_entry *entry)
{
	/* TODO ue will trigger an interrupt.
	 *
	 * When “Full RAS” is enabled, the per-IP interrupt sources should
	 * be disabled and the driver should only look for the aggregated
	 * interrupt via sync flood
	 */
	if (!amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__GFX)) {
		kgd2kfd_set_sram_ecc_flag(adev->kfd.dev);
		if (adev->gfx.ras && adev->gfx.ras->ras_block.hw_ops &&
		    adev->gfx.ras->ras_block.hw_ops->query_ras_error_count)
			adev->gfx.ras->ras_block.hw_ops->query_ras_error_count(adev, err_data);
		amdgpu_ras_reset_gpu(adev);
	}
	return AMDGPU_RAS_SUCCESS;
}

int amdgpu_gfx_cp_ecc_error_irq(struct amdgpu_device *adev,
				  struct amdgpu_irq_src *source,
				  struct amdgpu_iv_entry *entry)
{
	struct ras_common_if *ras_if = adev->gfx.ras_if;
	struct ras_dispatch_if ih_data = {
		.entry = entry,
	};

	if (!ras_if)
		return 0;

	ih_data.head = *ras_if;

	DRM_ERROR("CP ECC ERROR IRQ\n");
	amdgpu_ras_interrupt_dispatch(adev, &ih_data);
	return 0;
}

void amdgpu_gfx_ras_error_func(struct amdgpu_device *adev,
		void *ras_error_status,
		void (*func)(struct amdgpu_device *adev, void *ras_error_status,
				int xcc_id))
{
	int i;
	int num_xcc = adev->gfx.xcc_mask ? NUM_XCC(adev->gfx.xcc_mask) : 1;
	uint32_t xcc_mask = GENMASK(num_xcc - 1, 0);
	struct ras_err_data *err_data = (struct ras_err_data *)ras_error_status;

	if (err_data) {
		err_data->ue_count = 0;
		err_data->ce_count = 0;
	}

	for_each_inst(i, xcc_mask)
		func(adev, ras_error_status, i);
}

uint32_t amdgpu_kiq_rreg(struct amdgpu_device *adev, uint32_t reg, uint32_t xcc_id)
{
	signed long r, cnt = 0;
	unsigned long flags;
	uint32_t seq, reg_val_offs = 0, value = 0;
	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
	struct amdgpu_ring *ring = &kiq->ring;

	if (amdgpu_device_skip_hw_access(adev))
		return 0;

	if (adev->mes.ring[0].sched.ready)
		return amdgpu_mes_rreg(adev, reg);

	BUG_ON(!ring->funcs->emit_rreg);

	spin_lock_irqsave(&kiq->ring_lock, flags);
	if (amdgpu_device_wb_get(adev, &reg_val_offs)) {
		pr_err("critical bug! too many kiq readers\n");
		goto failed_unlock;
	}
	r = amdgpu_ring_alloc(ring, 32);
	if (r)
		goto failed_unlock;

	amdgpu_ring_emit_rreg(ring, reg, reg_val_offs);
	r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT);
	if (r)
		goto failed_undo;

	amdgpu_ring_commit(ring);
	spin_unlock_irqrestore(&kiq->ring_lock, flags);

	r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);

	/* don't wait anymore for gpu reset case because this way may
	 * block gpu_recover() routine forever, e.g. this virt_kiq_rreg
	 * is triggered in TTM and ttm_bo_lock_delayed_workqueue() will
	 * never return if we keep waiting in virt_kiq_rreg, which cause
	 * gpu_recover() hang there.
	 *
	 * also don't wait anymore for IRQ context
	 * */
	if (r < 1 && (amdgpu_in_reset(adev) || in_interrupt()))
		goto failed_kiq_read;

	might_sleep();
	while (r < 1 && cnt++ < MAX_KIQ_REG_TRY) {
		msleep(MAX_KIQ_REG_BAILOUT_INTERVAL);
		r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
	}

	if (cnt > MAX_KIQ_REG_TRY)
		goto failed_kiq_read;

	mb();
	value = adev->wb.wb[reg_val_offs];
	amdgpu_device_wb_free(adev, reg_val_offs);
	return value;

failed_undo:
	amdgpu_ring_undo(ring);
failed_unlock:
	spin_unlock_irqrestore(&kiq->ring_lock, flags);
failed_kiq_read:
	if (reg_val_offs)
		amdgpu_device_wb_free(adev, reg_val_offs);
	dev_err(adev->dev, "failed to read reg:%x\n", reg);
	return ~0;
}

void amdgpu_kiq_wreg(struct amdgpu_device *adev, uint32_t reg, uint32_t v, uint32_t xcc_id)
{
	signed long r, cnt = 0;
	unsigned long flags;
	uint32_t seq;
	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
	struct amdgpu_ring *ring = &kiq->ring;

	BUG_ON(!ring->funcs->emit_wreg);

	if (amdgpu_device_skip_hw_access(adev))
		return;

	if (adev->mes.ring[0].sched.ready) {
		amdgpu_mes_wreg(adev, reg, v);
		return;
	}

	spin_lock_irqsave(&kiq->ring_lock, flags);
	r = amdgpu_ring_alloc(ring, 32);
	if (r)
		goto failed_unlock;

	amdgpu_ring_emit_wreg(ring, reg, v);
	r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT);
	if (r)
		goto failed_undo;

	amdgpu_ring_commit(ring);
	spin_unlock_irqrestore(&kiq->ring_lock, flags);

	r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);

	/* don't wait anymore for gpu reset case because this way may
	 * block gpu_recover() routine forever, e.g. this virt_kiq_rreg
	 * is triggered in TTM and ttm_bo_lock_delayed_workqueue() will
	 * never return if we keep waiting in virt_kiq_rreg, which cause
	 * gpu_recover() hang there.
	 *
	 * also don't wait anymore for IRQ context
	 * */
	if (r < 1 && (amdgpu_in_reset(adev) || in_interrupt()))
		goto failed_kiq_write;

	might_sleep();
	while (r < 1 && cnt++ < MAX_KIQ_REG_TRY) {

		msleep(MAX_KIQ_REG_BAILOUT_INTERVAL);
		r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
	}

	if (cnt > MAX_KIQ_REG_TRY)
		goto failed_kiq_write;

	return;

failed_undo:
	amdgpu_ring_undo(ring);
failed_unlock:
	spin_unlock_irqrestore(&kiq->ring_lock, flags);
failed_kiq_write:
	dev_err(adev->dev, "failed to write reg:%x\n", reg);
}

int amdgpu_gfx_get_num_kcq(struct amdgpu_device *adev)
{
	if (amdgpu_num_kcq == -1) {
		return 8;
	} else if (amdgpu_num_kcq > 8 || amdgpu_num_kcq < 0) {
		dev_warn(adev->dev, "set kernel compute queue number to 8 due to invalid parameter provided by user\n");
		return 8;
	}
	return amdgpu_num_kcq;
}

void amdgpu_gfx_cp_init_microcode(struct amdgpu_device *adev,
				  uint32_t ucode_id)
{
	const struct gfx_firmware_header_v1_0 *cp_hdr;
	const struct gfx_firmware_header_v2_0 *cp_hdr_v2_0;
	struct amdgpu_firmware_info *info = NULL;
	const struct firmware *ucode_fw;
	unsigned int fw_size;

	switch (ucode_id) {
	case AMDGPU_UCODE_ID_CP_PFP:
		cp_hdr = (const struct gfx_firmware_header_v1_0 *)
			adev->gfx.pfp_fw->data;
		adev->gfx.pfp_fw_version =
			le32_to_cpu(cp_hdr->header.ucode_version);
		adev->gfx.pfp_feature_version =
			le32_to_cpu(cp_hdr->ucode_feature_version);
		ucode_fw = adev->gfx.pfp_fw;
		fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes);
		break;
	case AMDGPU_UCODE_ID_CP_RS64_PFP:
		cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
			adev->gfx.pfp_fw->data;
		adev->gfx.pfp_fw_version =
			le32_to_cpu(cp_hdr_v2_0->header.ucode_version);
		adev->gfx.pfp_feature_version =
			le32_to_cpu(cp_hdr_v2_0->ucode_feature_version);
		ucode_fw = adev->gfx.pfp_fw;
		fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes);
		break;
	case AMDGPU_UCODE_ID_CP_RS64_PFP_P0_STACK:
	case AMDGPU_UCODE_ID_CP_RS64_PFP_P1_STACK:
		cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
			adev->gfx.pfp_fw->data;
		ucode_fw = adev->gfx.pfp_fw;
		fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes);
		break;
	case AMDGPU_UCODE_ID_CP_ME:
		cp_hdr = (const struct gfx_firmware_header_v1_0 *)
			adev->gfx.me_fw->data;
		adev->gfx.me_fw_version =
			le32_to_cpu(cp_hdr->header.ucode_version);
		adev->gfx.me_feature_version =
			le32_to_cpu(cp_hdr->ucode_feature_version);
		ucode_fw = adev->gfx.me_fw;
		fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes);
		break;
	case AMDGPU_UCODE_ID_CP_RS64_ME:
		cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
			adev->gfx.me_fw->data;
		adev->gfx.me_fw_version =
			le32_to_cpu(cp_hdr_v2_0->header.ucode_version);
		adev->gfx.me_feature_version =
			le32_to_cpu(cp_hdr_v2_0->ucode_feature_version);
		ucode_fw = adev->gfx.me_fw;
		fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes);
		break;
	case AMDGPU_UCODE_ID_CP_RS64_ME_P0_STACK:
	case AMDGPU_UCODE_ID_CP_RS64_ME_P1_STACK:
		cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
			adev->gfx.me_fw->data;
		ucode_fw = adev->gfx.me_fw;
		fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes);
		break;
	case AMDGPU_UCODE_ID_CP_CE:
		cp_hdr = (const struct gfx_firmware_header_v1_0 *)
			adev->gfx.ce_fw->data;
		adev->gfx.ce_fw_version =
			le32_to_cpu(cp_hdr->header.ucode_version);
		adev->gfx.ce_feature_version =
			le32_to_cpu(cp_hdr->ucode_feature_version);
		ucode_fw = adev->gfx.ce_fw;
		fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes);
		break;
	case AMDGPU_UCODE_ID_CP_MEC1:
		cp_hdr = (const struct gfx_firmware_header_v1_0 *)
			adev->gfx.mec_fw->data;
		adev->gfx.mec_fw_version =
			le32_to_cpu(cp_hdr->header.ucode_version);
		adev->gfx.mec_feature_version =
			le32_to_cpu(cp_hdr->ucode_feature_version);
		ucode_fw = adev->gfx.mec_fw;
		fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes) -
			  le32_to_cpu(cp_hdr->jt_size) * 4;
		break;
	case AMDGPU_UCODE_ID_CP_MEC1_JT:
		cp_hdr = (const struct gfx_firmware_header_v1_0 *)
			adev->gfx.mec_fw->data;
		ucode_fw = adev->gfx.mec_fw;
		fw_size = le32_to_cpu(cp_hdr->jt_size) * 4;
		break;
	case AMDGPU_UCODE_ID_CP_MEC2:
		cp_hdr = (const struct gfx_firmware_header_v1_0 *)
			adev->gfx.mec2_fw->data;
		adev->gfx.mec2_fw_version =
			le32_to_cpu(cp_hdr->header.ucode_version);
		adev->gfx.mec2_feature_version =
			le32_to_cpu(cp_hdr->ucode_feature_version);
		ucode_fw = adev->gfx.mec2_fw;
		fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes) -
			  le32_to_cpu(cp_hdr->jt_size) * 4;
		break;
	case AMDGPU_UCODE_ID_CP_MEC2_JT:
		cp_hdr = (const struct gfx_firmware_header_v1_0 *)
			adev->gfx.mec2_fw->data;
		ucode_fw = adev->gfx.mec2_fw;
		fw_size = le32_to_cpu(cp_hdr->jt_size) * 4;
		break;
	case AMDGPU_UCODE_ID_CP_RS64_MEC:
		cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
			adev->gfx.mec_fw->data;
		adev->gfx.mec_fw_version =
			le32_to_cpu(cp_hdr_v2_0->header.ucode_version);
		adev->gfx.mec_feature_version =
			le32_to_cpu(cp_hdr_v2_0->ucode_feature_version);
		ucode_fw = adev->gfx.mec_fw;
		fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes);
		break;
	case AMDGPU_UCODE_ID_CP_RS64_MEC_P0_STACK:
	case AMDGPU_UCODE_ID_CP_RS64_MEC_P1_STACK:
	case AMDGPU_UCODE_ID_CP_RS64_MEC_P2_STACK:
	case AMDGPU_UCODE_ID_CP_RS64_MEC_P3_STACK:
		cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
			adev->gfx.mec_fw->data;
		ucode_fw = adev->gfx.mec_fw;
		fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes);
		break;
	default:
		dev_err(adev->dev, "Invalid ucode id %u\n", ucode_id);
		return;
	}

	if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) {
		info = &adev->firmware.ucode[ucode_id];
		info->ucode_id = ucode_id;
		info->fw = ucode_fw;
		adev->firmware.fw_size += ALIGN(fw_size, PAGE_SIZE);
	}
}

bool amdgpu_gfx_is_master_xcc(struct amdgpu_device *adev, int xcc_id)
{
	return !(xcc_id % (adev->gfx.num_xcc_per_xcp ?
			adev->gfx.num_xcc_per_xcp : 1));
}

static ssize_t amdgpu_gfx_get_current_compute_partition(struct device *dev,
						struct device_attribute *addr,
						char *buf)
{
	struct drm_device *ddev = dev_get_drvdata(dev);
	struct amdgpu_device *adev = drm_to_adev(ddev);
	int mode;

	mode = amdgpu_xcp_query_partition_mode(adev->xcp_mgr,
					       AMDGPU_XCP_FL_NONE);

	return sysfs_emit(buf, "%s\n", amdgpu_gfx_compute_mode_desc(mode));
}

static ssize_t amdgpu_gfx_set_compute_partition(struct device *dev,
						struct device_attribute *addr,
						const char *buf, size_t count)
{
	struct drm_device *ddev = dev_get_drvdata(dev);
	struct amdgpu_device *adev = drm_to_adev(ddev);
	enum amdgpu_gfx_partition mode;
	int ret = 0, num_xcc;

	num_xcc = NUM_XCC(adev->gfx.xcc_mask);
	if (num_xcc % 2 != 0)
		return -EINVAL;

	if (!strncasecmp("SPX", buf, strlen("SPX"))) {
		mode = AMDGPU_SPX_PARTITION_MODE;
	} else if (!strncasecmp("DPX", buf, strlen("DPX"))) {
		/*
		 * DPX mode needs AIDs to be in multiple of 2.
		 * Each AID connects 2 XCCs.
		 */
		if (num_xcc%4)
			return -EINVAL;
		mode = AMDGPU_DPX_PARTITION_MODE;
	} else if (!strncasecmp("TPX", buf, strlen("TPX"))) {
		if (num_xcc != 6)
			return -EINVAL;
		mode = AMDGPU_TPX_PARTITION_MODE;
	} else if (!strncasecmp("QPX", buf, strlen("QPX"))) {
		if (num_xcc != 8)
			return -EINVAL;
		mode = AMDGPU_QPX_PARTITION_MODE;
	} else if (!strncasecmp("CPX", buf, strlen("CPX"))) {
		mode = AMDGPU_CPX_PARTITION_MODE;
	} else {
		return -EINVAL;
	}

	ret = amdgpu_xcp_switch_partition_mode(adev->xcp_mgr, mode);

	if (ret)
		return ret;

	return count;
}

static const char *xcp_desc[] = {
	[AMDGPU_SPX_PARTITION_MODE] = "SPX",
	[AMDGPU_DPX_PARTITION_MODE] = "DPX",
	[AMDGPU_TPX_PARTITION_MODE] = "TPX",
	[AMDGPU_QPX_PARTITION_MODE] = "QPX",
	[AMDGPU_CPX_PARTITION_MODE] = "CPX",
};

static ssize_t amdgpu_gfx_get_available_compute_partition(struct device *dev,
						struct device_attribute *addr,
						char *buf)
{
	struct drm_device *ddev = dev_get_drvdata(dev);
	struct amdgpu_device *adev = drm_to_adev(ddev);
	struct amdgpu_xcp_mgr *xcp_mgr = adev->xcp_mgr;
	int size = 0, mode;
	char *sep = "";

	if (!xcp_mgr || !xcp_mgr->avail_xcp_modes)
		return sysfs_emit(buf, "Not supported\n");

	for_each_inst(mode, xcp_mgr->avail_xcp_modes) {
		size += sysfs_emit_at(buf, size, "%s%s", sep, xcp_desc[mode]);
		sep = ", ";
	}

	size += sysfs_emit_at(buf, size, "\n");

	return size;
}

static int amdgpu_gfx_run_cleaner_shader_job(struct amdgpu_ring *ring)
{
	struct amdgpu_device *adev = ring->adev;
	struct drm_gpu_scheduler *sched = &ring->sched;
	struct drm_sched_entity entity;
	struct dma_fence *f;
	struct amdgpu_job *job;
	struct amdgpu_ib *ib;
	int i, r;

	/* Initialize the scheduler entity */
	r = drm_sched_entity_init(&entity, DRM_SCHED_PRIORITY_NORMAL,
				  &sched, 1, NULL);
	if (r) {
		dev_err(adev->dev, "Failed setting up GFX kernel entity.\n");
		goto err;
	}

	r = amdgpu_job_alloc_with_ib(ring->adev, &entity, NULL,
				     64, 0,
				     &job);
	if (r)
		goto err;

	job->enforce_isolation = true;

	ib = &job->ibs[0];
	for (i = 0; i <= ring->funcs->align_mask; ++i)
		ib->ptr[i] = ring->funcs->nop;
	ib->length_dw = ring->funcs->align_mask + 1;

	f = amdgpu_job_submit(job);

	r = dma_fence_wait(f, false);
	if (r)
		goto err;

	dma_fence_put(f);

	/* Clean up the scheduler entity */
	drm_sched_entity_destroy(&entity);
	return 0;

err:
	return r;
}

static int amdgpu_gfx_run_cleaner_shader(struct amdgpu_device *adev, int xcp_id)
{
	int num_xcc = NUM_XCC(adev->gfx.xcc_mask);
	struct amdgpu_ring *ring;
	int num_xcc_to_clear;
	int i, r, xcc_id;

	if (adev->gfx.num_xcc_per_xcp)
		num_xcc_to_clear = adev->gfx.num_xcc_per_xcp;
	else
		num_xcc_to_clear = 1;

	for (xcc_id = 0; xcc_id < num_xcc; xcc_id++) {
		for (i = 0; i < adev->gfx.num_compute_rings; i++) {
			ring = &adev->gfx.compute_ring[i + xcc_id * adev->gfx.num_compute_rings];
			if ((ring->xcp_id == xcp_id) && ring->sched.ready) {
				r = amdgpu_gfx_run_cleaner_shader_job(ring);
				if (r)
					return r;
				num_xcc_to_clear--;
				break;
			}
		}
	}

	if (num_xcc_to_clear)
		return -ENOENT;

	return 0;
}

/**
 * amdgpu_gfx_set_run_cleaner_shader - Execute the AMDGPU GFX Cleaner Shader
 * @dev: The device structure
 * @attr: The device attribute structure
 * @buf: The buffer containing the input data
 * @count: The size of the input data
 *
 * Provides the sysfs interface to manually run a cleaner shader, which is
 * used to clear the GPU state between different tasks. Writing a value to the
 * 'run_cleaner_shader' sysfs file triggers the cleaner shader execution.
 * The value written corresponds to the partition index on multi-partition
 * devices. On single-partition devices, the value should be '0'.
 *
 * The cleaner shader clears the Local Data Store (LDS) and General Purpose
 * Registers (GPRs) to ensure data isolation between GPU workloads.
 *
 * Return: The number of bytes written to the sysfs file.
 */
static ssize_t amdgpu_gfx_set_run_cleaner_shader(struct device *dev,
						 struct device_attribute *attr,
						 const char *buf,
						 size_t count)
{
	struct drm_device *ddev = dev_get_drvdata(dev);
	struct amdgpu_device *adev = drm_to_adev(ddev);
	int ret;
	long value;

	if (amdgpu_in_reset(adev))
		return -EPERM;
	if (adev->in_suspend && !adev->in_runpm)
		return -EPERM;

	ret = kstrtol(buf, 0, &value);

	if (ret)
		return -EINVAL;

	if (value < 0)
		return -EINVAL;

	if (adev->xcp_mgr) {
		if (value >= adev->xcp_mgr->num_xcps)
			return -EINVAL;
	} else {
		if (value > 1)
			return -EINVAL;
	}

	ret = pm_runtime_get_sync(ddev->dev);
	if (ret < 0) {
		pm_runtime_put_autosuspend(ddev->dev);
		return ret;
	}

	ret = amdgpu_gfx_run_cleaner_shader(adev, value);

	pm_runtime_mark_last_busy(ddev->dev);
	pm_runtime_put_autosuspend(ddev->dev);

	if (ret)
		return ret;

	return count;
}

/**
 * amdgpu_gfx_get_enforce_isolation - Query AMDGPU GFX Enforce Isolation Settings
 * @dev: The device structure
 * @attr: The device attribute structure
 * @buf: The buffer to store the output data
 *
 * Provides the sysfs read interface to get the current settings of the 'enforce_isolation'
 * feature for each GPU partition. Reading from the 'enforce_isolation'
 * sysfs file returns the isolation settings for all partitions, where '0'
 * indicates disabled and '1' indicates enabled.
 *
 * Return: The number of bytes read from the sysfs file.
 */
static ssize_t amdgpu_gfx_get_enforce_isolation(struct device *dev,
						struct device_attribute *attr,
						char *buf)
{
	struct drm_device *ddev = dev_get_drvdata(dev);
	struct amdgpu_device *adev = drm_to_adev(ddev);
	int i;
	ssize_t size = 0;

	if (adev->xcp_mgr) {
		for (i = 0; i < adev->xcp_mgr->num_xcps; i++) {
			size += sysfs_emit_at(buf, size, "%u", adev->enforce_isolation[i]);
			if (i < (adev->xcp_mgr->num_xcps - 1))
				size += sysfs_emit_at(buf, size, " ");
		}
		buf[size++] = '\n';
	} else {
		size = sysfs_emit_at(buf, 0, "%u\n", adev->enforce_isolation[0]);
	}

	return size;
}

/**
 * amdgpu_gfx_set_enforce_isolation - Control AMDGPU GFX Enforce Isolation
 * @dev: The device structure
 * @attr: The device attribute structure
 * @buf: The buffer containing the input data
 * @count: The size of the input data
 *
 * This function allows control over the 'enforce_isolation' feature, which
 * serializes access to the graphics engine. Writing '1' or '0' to the
 * 'enforce_isolation' sysfs file enables or disables process isolation for
 * each partition. The input should specify the setting for all partitions.
 *
 * Return: The number of bytes written to the sysfs file.
 */
static ssize_t amdgpu_gfx_set_enforce_isolation(struct device *dev,
						struct device_attribute *attr,
						const char *buf, size_t count)
{
	struct drm_device *ddev = dev_get_drvdata(dev);
	struct amdgpu_device *adev = drm_to_adev(ddev);
	long partition_values[MAX_XCP] = {0};
	int ret, i, num_partitions;
	const char *input_buf = buf;

	for (i = 0; i < (adev->xcp_mgr ? adev->xcp_mgr->num_xcps : 1); i++) {
		ret = sscanf(input_buf, "%ld", &partition_values[i]);
		if (ret <= 0)
			break;

		/* Move the pointer to the next value in the string */
		input_buf = strchr(input_buf, ' ');
		if (input_buf) {
			input_buf++;
		} else {
			i++;
			break;
		}
	}
	num_partitions = i;

	if (adev->xcp_mgr && num_partitions != adev->xcp_mgr->num_xcps)
		return -EINVAL;

	if (!adev->xcp_mgr && num_partitions != 1)
		return -EINVAL;

	for (i = 0; i < num_partitions; i++) {
		if (partition_values[i] != 0 && partition_values[i] != 1)
			return -EINVAL;
	}

	mutex_lock(&adev->enforce_isolation_mutex);

	for (i = 0; i < num_partitions; i++) {
		if (adev->enforce_isolation[i] && !partition_values[i]) {
			/* Going from enabled to disabled */
			amdgpu_vmid_free_reserved(adev, AMDGPU_GFXHUB(i));
			amdgpu_mes_set_enforce_isolation(adev, i, false);
		} else if (!adev->enforce_isolation[i] && partition_values[i]) {
			/* Going from disabled to enabled */
			amdgpu_vmid_alloc_reserved(adev, AMDGPU_GFXHUB(i));
			amdgpu_mes_set_enforce_isolation(adev, i, true);
		}
		adev->enforce_isolation[i] = partition_values[i];
	}

	mutex_unlock(&adev->enforce_isolation_mutex);

	return count;
}

static ssize_t amdgpu_gfx_get_gfx_reset_mask(struct device *dev,
						struct device_attribute *attr,
						char *buf)
{
	struct drm_device *ddev = dev_get_drvdata(dev);
	struct amdgpu_device *adev = drm_to_adev(ddev);

	if (!adev)
		return -ENODEV;

	return amdgpu_show_reset_mask(buf, adev->gfx.gfx_supported_reset);
}

static ssize_t amdgpu_gfx_get_compute_reset_mask(struct device *dev,
						struct device_attribute *attr,
						char *buf)
{
	struct drm_device *ddev = dev_get_drvdata(dev);
	struct amdgpu_device *adev = drm_to_adev(ddev);

	if (!adev)
		return -ENODEV;

	return amdgpu_show_reset_mask(buf, adev->gfx.compute_supported_reset);
}

static DEVICE_ATTR(run_cleaner_shader, 0200,
		   NULL, amdgpu_gfx_set_run_cleaner_shader);

static DEVICE_ATTR(enforce_isolation, 0644,
		   amdgpu_gfx_get_enforce_isolation,
		   amdgpu_gfx_set_enforce_isolation);

static DEVICE_ATTR(current_compute_partition, 0644,
		   amdgpu_gfx_get_current_compute_partition,
		   amdgpu_gfx_set_compute_partition);

static DEVICE_ATTR(available_compute_partition, 0444,
		   amdgpu_gfx_get_available_compute_partition, NULL);
static DEVICE_ATTR(gfx_reset_mask, 0444,
		   amdgpu_gfx_get_gfx_reset_mask, NULL);

static DEVICE_ATTR(compute_reset_mask, 0444,
		   amdgpu_gfx_get_compute_reset_mask, NULL);

static int amdgpu_gfx_sysfs_xcp_init(struct amdgpu_device *adev)
{
	struct amdgpu_xcp_mgr *xcp_mgr = adev->xcp_mgr;
	bool xcp_switch_supported;
	int r;

	if (!xcp_mgr)
		return 0;

	xcp_switch_supported =
		(xcp_mgr->funcs && xcp_mgr->funcs->switch_partition_mode);

	if (!xcp_switch_supported)
		dev_attr_current_compute_partition.attr.mode &=
			~(S_IWUSR | S_IWGRP | S_IWOTH);

	r = device_create_file(adev->dev, &dev_attr_current_compute_partition);
	if (r)
		return r;

	if (xcp_switch_supported)
		r = device_create_file(adev->dev,
				       &dev_attr_available_compute_partition);

	return r;
}

static void amdgpu_gfx_sysfs_xcp_fini(struct amdgpu_device *adev)
{
	struct amdgpu_xcp_mgr *xcp_mgr = adev->xcp_mgr;
	bool xcp_switch_supported;

	if (!xcp_mgr)
		return;

	xcp_switch_supported =
		(xcp_mgr->funcs && xcp_mgr->funcs->switch_partition_mode);
	device_remove_file(adev->dev, &dev_attr_current_compute_partition);

	if (xcp_switch_supported)
		device_remove_file(adev->dev,
				   &dev_attr_available_compute_partition);
}

static int amdgpu_gfx_sysfs_isolation_shader_init(struct amdgpu_device *adev)
{
	int r;

	r = device_create_file(adev->dev, &dev_attr_enforce_isolation);
	if (r)
		return r;
	if (adev->gfx.enable_cleaner_shader)
		r = device_create_file(adev->dev, &dev_attr_run_cleaner_shader);

	return r;
}

static void amdgpu_gfx_sysfs_isolation_shader_fini(struct amdgpu_device *adev)
{
	device_remove_file(adev->dev, &dev_attr_enforce_isolation);
	if (adev->gfx.enable_cleaner_shader)
		device_remove_file(adev->dev, &dev_attr_run_cleaner_shader);
}

static int amdgpu_gfx_sysfs_reset_mask_init(struct amdgpu_device *adev)
{
	int r = 0;

	if (!amdgpu_gpu_recovery)
		return r;

	if (adev->gfx.num_gfx_rings) {
		r = device_create_file(adev->dev, &dev_attr_gfx_reset_mask);
		if (r)
			return r;
	}

	if (adev->gfx.num_compute_rings) {
		r = device_create_file(adev->dev, &dev_attr_compute_reset_mask);
		if (r)
			return r;
	}

	return r;
}

static void amdgpu_gfx_sysfs_reset_mask_fini(struct amdgpu_device *adev)
{
	if (!amdgpu_gpu_recovery)
		return;

	if (adev->gfx.num_gfx_rings)
		device_remove_file(adev->dev, &dev_attr_gfx_reset_mask);

	if (adev->gfx.num_compute_rings)
		device_remove_file(adev->dev, &dev_attr_compute_reset_mask);
}

int amdgpu_gfx_sysfs_init(struct amdgpu_device *adev)
{
	int r;

	r = amdgpu_gfx_sysfs_xcp_init(adev);
	if (r) {
		dev_err(adev->dev, "failed to create xcp sysfs files");
		return r;
	}

	r = amdgpu_gfx_sysfs_isolation_shader_init(adev);
	if (r)
		dev_err(adev->dev, "failed to create isolation sysfs files");

	r = amdgpu_gfx_sysfs_reset_mask_init(adev);
	if (r)
		dev_err(adev->dev, "failed to create reset mask sysfs files");

	return r;
}

void amdgpu_gfx_sysfs_fini(struct amdgpu_device *adev)
{
	if (adev->dev->kobj.sd) {
		amdgpu_gfx_sysfs_xcp_fini(adev);
		amdgpu_gfx_sysfs_isolation_shader_fini(adev);
		amdgpu_gfx_sysfs_reset_mask_fini(adev);
	}
}

int amdgpu_gfx_cleaner_shader_sw_init(struct amdgpu_device *adev,
				      unsigned int cleaner_shader_size)
{
	if (!adev->gfx.enable_cleaner_shader)
		return -EOPNOTSUPP;

	return amdgpu_bo_create_kernel(adev, cleaner_shader_size, PAGE_SIZE,
				       AMDGPU_GEM_DOMAIN_VRAM | AMDGPU_GEM_DOMAIN_GTT,
				       &adev->gfx.cleaner_shader_obj,
				       &adev->gfx.cleaner_shader_gpu_addr,
				       (void **)&adev->gfx.cleaner_shader_cpu_ptr);
}

void amdgpu_gfx_cleaner_shader_sw_fini(struct amdgpu_device *adev)
{
	if (!adev->gfx.enable_cleaner_shader)
		return;

	amdgpu_bo_free_kernel(&adev->gfx.cleaner_shader_obj,
			      &adev->gfx.cleaner_shader_gpu_addr,
			      (void **)&adev->gfx.cleaner_shader_cpu_ptr);
}

void amdgpu_gfx_cleaner_shader_init(struct amdgpu_device *adev,
				    unsigned int cleaner_shader_size,
				    const void *cleaner_shader_ptr)
{
	if (!adev->gfx.enable_cleaner_shader)
		return;

	if (adev->gfx.cleaner_shader_cpu_ptr && cleaner_shader_ptr)
		memcpy_toio(adev->gfx.cleaner_shader_cpu_ptr, cleaner_shader_ptr,
			    cleaner_shader_size);
}

/**
 * amdgpu_gfx_kfd_sch_ctrl - Control the KFD scheduler from the KGD (Graphics Driver)
 * @adev: amdgpu_device pointer
 * @idx: Index of the scheduler to control
 * @enable: Whether to enable or disable the KFD scheduler
 *
 * This function is used to control the KFD (Kernel Fusion Driver) scheduler
 * from the KGD. It is part of the cleaner shader feature. This function plays
 * a key role in enforcing process isolation on the GPU.
 *
 * The function uses a reference count mechanism (kfd_sch_req_count) to keep
 * track of the number of requests to enable the KFD scheduler. When a request
 * to enable the KFD scheduler is made, the reference count is decremented.
 * When the reference count reaches zero, a delayed work is scheduled to
 * enforce isolation after a delay of GFX_SLICE_PERIOD.
 *
 * When a request to disable the KFD scheduler is made, the function first
 * checks if the reference count is zero. If it is, it cancels the delayed work
 * for enforcing isolation and checks if the KFD scheduler is active. If the
 * KFD scheduler is active, it sends a request to stop the KFD scheduler and
 * sets the KFD scheduler state to inactive. Then, it increments the reference
 * count.
 *
 * The function is synchronized using the kfd_sch_mutex to ensure that the KFD
 * scheduler state and reference count are updated atomically.
 *
 * Note: If the reference count is already zero when a request to enable the
 * KFD scheduler is made, it means there's an imbalance bug somewhere. The
 * function triggers a warning in this case.
 */
static void amdgpu_gfx_kfd_sch_ctrl(struct amdgpu_device *adev, u32 idx,
				    bool enable)
{
	mutex_lock(&adev->gfx.kfd_sch_mutex);

	if (enable) {
		/* If the count is already 0, it means there's an imbalance bug somewhere.
		 * Note that the bug may be in a different caller than the one which triggers the
		 * WARN_ON_ONCE.
		 */
		if (WARN_ON_ONCE(adev->gfx.kfd_sch_req_count[idx] == 0)) {
			dev_err(adev->dev, "Attempted to enable KFD scheduler when reference count is already zero\n");
			goto unlock;
		}

		adev->gfx.kfd_sch_req_count[idx]--;

		if (adev->gfx.kfd_sch_req_count[idx] == 0 &&
		    adev->gfx.kfd_sch_inactive[idx]) {
			schedule_delayed_work(&adev->gfx.enforce_isolation[idx].work,
					      msecs_to_jiffies(adev->gfx.enforce_isolation_time[idx]));
		}
	} else {
		if (adev->gfx.kfd_sch_req_count[idx] == 0) {
			cancel_delayed_work_sync(&adev->gfx.enforce_isolation[idx].work);
			if (!adev->gfx.kfd_sch_inactive[idx]) {
				amdgpu_amdkfd_stop_sched(adev, idx);
				adev->gfx.kfd_sch_inactive[idx] = true;
			}
		}

		adev->gfx.kfd_sch_req_count[idx]++;
	}

unlock:
	mutex_unlock(&adev->gfx.kfd_sch_mutex);
}

/**
 * amdgpu_gfx_enforce_isolation_handler - work handler for enforcing shader isolation
 *
 * @work: work_struct.
 *
 * This function is the work handler for enforcing shader isolation on AMD GPUs.
 * It counts the number of emitted fences for each GFX and compute ring. If there
 * are any fences, it schedules the `enforce_isolation_work` to be run after a
 * delay of `GFX_SLICE_PERIOD`. If there are no fences, it signals the Kernel Fusion
 * Driver (KFD) to resume the runqueue. The function is synchronized using the
 * `enforce_isolation_mutex`.
 */
void amdgpu_gfx_enforce_isolation_handler(struct work_struct *work)
{
	struct amdgpu_isolation_work *isolation_work =
		container_of(work, struct amdgpu_isolation_work, work.work);
	struct amdgpu_device *adev = isolation_work->adev;
	u32 i, idx, fences = 0;

	if (isolation_work->xcp_id == AMDGPU_XCP_NO_PARTITION)
		idx = 0;
	else
		idx = isolation_work->xcp_id;

	if (idx >= MAX_XCP)
		return;

	mutex_lock(&adev->enforce_isolation_mutex);
	for (i = 0; i < AMDGPU_MAX_GFX_RINGS; ++i) {
		if (isolation_work->xcp_id == adev->gfx.gfx_ring[i].xcp_id)
			fences += amdgpu_fence_count_emitted(&adev->gfx.gfx_ring[i]);
	}
	for (i = 0; i < (AMDGPU_MAX_COMPUTE_RINGS * AMDGPU_MAX_GC_INSTANCES); ++i) {
		if (isolation_work->xcp_id == adev->gfx.compute_ring[i].xcp_id)
			fences += amdgpu_fence_count_emitted(&adev->gfx.compute_ring[i]);
	}
	if (fences) {
		/* we've already had our timeslice, so let's wrap this up */
		schedule_delayed_work(&adev->gfx.enforce_isolation[idx].work,
				      msecs_to_jiffies(1));
	} else {
		/* Tell KFD to resume the runqueue */
		if (adev->kfd.init_complete) {
			WARN_ON_ONCE(!adev->gfx.kfd_sch_inactive[idx]);
			WARN_ON_ONCE(adev->gfx.kfd_sch_req_count[idx]);
				amdgpu_amdkfd_start_sched(adev, idx);
				adev->gfx.kfd_sch_inactive[idx] = false;
		}
	}
	mutex_unlock(&adev->enforce_isolation_mutex);
}

/**
 * amdgpu_gfx_enforce_isolation_wait_for_kfd - Manage KFD wait period for process isolation
 * @adev: amdgpu_device pointer
 * @idx: Index of the GPU partition
 *
 * When kernel submissions come in, the jobs are given a time slice and once
 * that time slice is up, if there are KFD user queues active, kernel
 * submissions are blocked until KFD has had its time slice. Once the KFD time
 * slice is up, KFD user queues are preempted and kernel submissions are
 * unblocked and allowed to run again.
 */
static void
amdgpu_gfx_enforce_isolation_wait_for_kfd(struct amdgpu_device *adev,
					  u32 idx)
{
	unsigned long cjiffies;
	bool wait = false;

	mutex_lock(&adev->enforce_isolation_mutex);
	if (adev->enforce_isolation[idx]) {
		/* set the initial values if nothing is set */
		if (!adev->gfx.enforce_isolation_jiffies[idx]) {
			adev->gfx.enforce_isolation_jiffies[idx] = jiffies;
			adev->gfx.enforce_isolation_time[idx] =	GFX_SLICE_PERIOD_MS;
		}
		/* Make sure KFD gets a chance to run */
		if (amdgpu_amdkfd_compute_active(adev, idx)) {
			cjiffies = jiffies;
			if (time_after(cjiffies, adev->gfx.enforce_isolation_jiffies[idx])) {
				cjiffies -= adev->gfx.enforce_isolation_jiffies[idx];
				if ((jiffies_to_msecs(cjiffies) >= GFX_SLICE_PERIOD_MS)) {
					/* if our time is up, let KGD work drain before scheduling more */
					wait = true;
					/* reset the timer period */
					adev->gfx.enforce_isolation_time[idx] =	GFX_SLICE_PERIOD_MS;
				} else {
					/* set the timer period to what's left in our time slice */
					adev->gfx.enforce_isolation_time[idx] =
						GFX_SLICE_PERIOD_MS - jiffies_to_msecs(cjiffies);
				}
			} else {
				/* if jiffies wrap around we will just wait a little longer */
				adev->gfx.enforce_isolation_jiffies[idx] = jiffies;
			}
		} else {
			/* if there is no KFD work, then set the full slice period */
			adev->gfx.enforce_isolation_jiffies[idx] = jiffies;
			adev->gfx.enforce_isolation_time[idx] = GFX_SLICE_PERIOD_MS;
		}
	}
	mutex_unlock(&adev->enforce_isolation_mutex);

	if (wait)
		msleep(GFX_SLICE_PERIOD_MS);
}

/**
 * amdgpu_gfx_enforce_isolation_ring_begin_use - Begin use of a ring with enforced isolation
 * @ring: Pointer to the amdgpu_ring structure
 *
 * Ring begin_use helper implementation for gfx which serializes access to the
 * gfx IP between kernel submission IOCTLs and KFD user queues when isolation
 * enforcement is enabled. The kernel submission IOCTLs and KFD user queues
 * each get a time slice when both are active.
 */
void amdgpu_gfx_enforce_isolation_ring_begin_use(struct amdgpu_ring *ring)
{
	struct amdgpu_device *adev = ring->adev;
	u32 idx;
	bool sched_work = false;

	if (!adev->gfx.enable_cleaner_shader)
		return;

	if (ring->xcp_id == AMDGPU_XCP_NO_PARTITION)
		idx = 0;
	else
		idx = ring->xcp_id;

	if (idx >= MAX_XCP)
		return;

	/* Don't submit more work until KFD has had some time */
	amdgpu_gfx_enforce_isolation_wait_for_kfd(adev, idx);

	mutex_lock(&adev->enforce_isolation_mutex);
	if (adev->enforce_isolation[idx]) {
		if (adev->kfd.init_complete)
			sched_work = true;
	}
	mutex_unlock(&adev->enforce_isolation_mutex);

	if (sched_work)
		amdgpu_gfx_kfd_sch_ctrl(adev, idx, false);
}

/**
 * amdgpu_gfx_enforce_isolation_ring_end_use - End use of a ring with enforced isolation
 * @ring: Pointer to the amdgpu_ring structure
 *
 * Ring end_use helper implementation for gfx which serializes access to the
 * gfx IP between kernel submission IOCTLs and KFD user queues when isolation
 * enforcement is enabled. The kernel submission IOCTLs and KFD user queues
 * each get a time slice when both are active.
 */
void amdgpu_gfx_enforce_isolation_ring_end_use(struct amdgpu_ring *ring)
{
	struct amdgpu_device *adev = ring->adev;
	u32 idx;
	bool sched_work = false;

	if (!adev->gfx.enable_cleaner_shader)
		return;

	if (ring->xcp_id == AMDGPU_XCP_NO_PARTITION)
		idx = 0;
	else
		idx = ring->xcp_id;

	if (idx >= MAX_XCP)
		return;

	mutex_lock(&adev->enforce_isolation_mutex);
	if (adev->enforce_isolation[idx]) {
		if (adev->kfd.init_complete)
			sched_work = true;
	}
	mutex_unlock(&adev->enforce_isolation_mutex);

	if (sched_work)
		amdgpu_gfx_kfd_sch_ctrl(adev, idx, true);
}

/*
 * debugfs for to enable/disable gfx job submission to specific core.
 */
#if defined(CONFIG_DEBUG_FS)
static int amdgpu_debugfs_gfx_sched_mask_set(void *data, u64 val)
{
	struct amdgpu_device *adev = (struct amdgpu_device *)data;
	u32 i;
	u64 mask = 0;
	struct amdgpu_ring *ring;

	if (!adev)
		return -ENODEV;

	mask = (1ULL << adev->gfx.num_gfx_rings) - 1;
	if ((val & mask) == 0)
		return -EINVAL;

	for (i = 0; i < adev->gfx.num_gfx_rings; ++i) {
		ring = &adev->gfx.gfx_ring[i];
		if (val & (1 << i))
			ring->sched.ready = true;
		else
			ring->sched.ready = false;
	}
	/* publish sched.ready flag update effective immediately across smp */
	smp_rmb();
	return 0;
}

static int amdgpu_debugfs_gfx_sched_mask_get(void *data, u64 *val)
{
	struct amdgpu_device *adev = (struct amdgpu_device *)data;
	u32 i;
	u64 mask = 0;
	struct amdgpu_ring *ring;

	if (!adev)
		return -ENODEV;
	for (i = 0; i < adev->gfx.num_gfx_rings; ++i) {
		ring = &adev->gfx.gfx_ring[i];
		if (ring->sched.ready)
			mask |= 1ULL << i;
	}

	*val = mask;
	return 0;
}

DEFINE_DEBUGFS_ATTRIBUTE(amdgpu_debugfs_gfx_sched_mask_fops,
			 amdgpu_debugfs_gfx_sched_mask_get,
			 amdgpu_debugfs_gfx_sched_mask_set, "%llx\n");

#endif

void amdgpu_debugfs_gfx_sched_mask_init(struct amdgpu_device *adev)
{
#if defined(CONFIG_DEBUG_FS)
	struct drm_minor *minor = adev_to_drm(adev)->primary;
	struct dentry *root = minor->debugfs_root;
	char name[32];

	if (!(adev->gfx.num_gfx_rings > 1))
		return;
	sprintf(name, "amdgpu_gfx_sched_mask");
	debugfs_create_file(name, 0600, root, adev,
			    &amdgpu_debugfs_gfx_sched_mask_fops);
#endif
}

/*
 * debugfs for to enable/disable compute job submission to specific core.
 */
#if defined(CONFIG_DEBUG_FS)
static int amdgpu_debugfs_compute_sched_mask_set(void *data, u64 val)
{
	struct amdgpu_device *adev = (struct amdgpu_device *)data;
	u32 i;
	u64 mask = 0;
	struct amdgpu_ring *ring;

	if (!adev)
		return -ENODEV;

	mask = (1ULL << adev->gfx.num_compute_rings) - 1;
	if ((val & mask) == 0)
		return -EINVAL;

	for (i = 0; i < adev->gfx.num_compute_rings; ++i) {
		ring = &adev->gfx.compute_ring[i];
		if (val & (1 << i))
			ring->sched.ready = true;
		else
			ring->sched.ready = false;
	}

	/* publish sched.ready flag update effective immediately across smp */
	smp_rmb();
	return 0;
}

static int amdgpu_debugfs_compute_sched_mask_get(void *data, u64 *val)
{
	struct amdgpu_device *adev = (struct amdgpu_device *)data;
	u32 i;
	u64 mask = 0;
	struct amdgpu_ring *ring;

	if (!adev)
		return -ENODEV;
	for (i = 0; i < adev->gfx.num_compute_rings; ++i) {
		ring = &adev->gfx.compute_ring[i];
		if (ring->sched.ready)
			mask |= 1ULL << i;
	}

	*val = mask;
	return 0;
}

DEFINE_DEBUGFS_ATTRIBUTE(amdgpu_debugfs_compute_sched_mask_fops,
			 amdgpu_debugfs_compute_sched_mask_get,
			 amdgpu_debugfs_compute_sched_mask_set, "%llx\n");

#endif

void amdgpu_debugfs_compute_sched_mask_init(struct amdgpu_device *adev)
{
#if defined(CONFIG_DEBUG_FS)
	struct drm_minor *minor = adev_to_drm(adev)->primary;
	struct dentry *root = minor->debugfs_root;
	char name[32];

	if (!(adev->gfx.num_compute_rings > 1))
		return;
	sprintf(name, "amdgpu_compute_sched_mask");
	debugfs_create_file(name, 0600, root, adev,
			    &amdgpu_debugfs_compute_sched_mask_fops);
#endif
}