I am editing an old .nb that generate the polarization map of a vector vortex beam from the Stokes parameters ( S1,S2,S3) stored in 3 different matrices (S1medie,S2medie,S3medie). the code initialize a 900x900 matrix named finalmatrixand then replace some elements with
Rotate[Circle[{i, j}, {a[S3medie], b[S3medie]}], ψ[S1medie, S2medie]]. Finally, by applying Graphics[{Thick, finalmatrix}, ImageSize -> {900, 900}],
I get the correct polarization pattern.
The problem is that, at that time, I used Rotate[Circle[...]]to display the ellipses and it does not allow me to modify the ellipses like I want ( adding a rotating arrow for example ).For this reason I planned to switch to ParametricPlot, but when I try to build an equivalent matrix the Graphics function doesn't work anymore. I suppose the reason behind this is that the Heads are different since ParametricPlot has already head Graphics.
I can't post the entire code nor the matrices here but this is the crucial part of it:
latocella = 3;
passo = 10;
χ[S3medie_] := ( 1/2 ) ArcSin[Abs[S3medie]];
a[S3medie_] := 8.0*Cos[χ[S3medie]] ;
b[S3medie_] := 8.0*Sin[χ[S3medie]] ;
ψ[S1medie_, S2medie_] :=
If[S1medie == 0 && S2medie == 0, 0, (1/2) ArcTan [S1medie, S2medie]];
Ellipse[i_, j_, S1medie_, S2medie_, S3medie_] :=
Rotate[Circle[{i, j}, {a[S3medie], b[S3medie]}], ψ[S1medie,
S2medie]]
fun[i_, j_] :=
finalmatrix[[j*latocella + (latocella + 1)/2,
900 - i*latocella - (latocella + 1)/2]] =
Ellipse[j*latocella, 899 - i* latocella, S1medie[[i, j]],
S2medie[[i, j]], S3medie[[i, j]]]
finalmatrix = Table[Null, {l, 1, 900}, {k, 1, 900}];
Outer[fun, Range[1, 299, passo], Range[1, 299, passo]];
Graphics[{Thick, finalmatrix}, ImageSize -> {900, 900}]
the parametric equation i tried to implement was:
ParametricPlot[
RotationMatrix[ψ[S1medie, S2medie]].{i +
8.0*Cos[χ[S3medie]]*Cos[x],
j + 8.0*Sin[χ[S3medie]] *Sin[x]} , {x, 0, 2 π}]
my questions are:
1)Does anyone know how I can obtain the same result with parametricplot?
2) is it possible to use SparseArray to save memory ?
3) is there a faster alternative?
