In studying the temporal evolution of a system according to the deterministic model, we begin by considering a Taylor series expansion for the displacement $r$. First, we consider a positive variation $+\Delta t$, then a negative variation $-\Delta t$
$$ \vec{r}(t+\Delta t) = \vec{r}|_{t} + \left( \vec{v}|_t \right) \Delta t + \dfrac{1}{2!} \left( \vec{a}|_t \right) \Delta t^2 + \dfrac{1}{3!} \left( \dfrac{\mathrm{d^3}}{\mathrm{d^3}t} \vec{r}|_{t} \right) \Delta t^3 + \dfrac{1}{4!} \left( \dfrac{\mathrm{d^4}}{\mathrm{d^4}t} \vec{r}|_{t} \right) \Delta t^4 $$
$$ \vec{r}(t-\Delta t) = \vec{r}|_{t} - \left( \vec{v}|_t \right) \Delta t + \dfrac{1}{2!} \left( \vec{a}|_t \right) \Delta t^2 - \dfrac{1}{3!} \left( \dfrac{\mathrm{d^3}}{\mathrm{d^3}t} \vec{r}|_{t} \right) \Delta t^3 + \dfrac{1}{4!} \left( \dfrac{\mathrm{d^4}}{\mathrm{d^4}t} \vec{r}|_{t} \right) \Delta t^4 $$
Subtracting member from member, we get
$$ \vec{r}(t+\Delta t) - \vec{r}(t-\Delta t) = 2\vec{v}|_t \Delta t + 2 \left[ \dfrac{1}{3!} \left( \dfrac{\mathrm{d^3}}{\mathrm{d^3}t} \vec{r}|_{t} \right) \Delta t^3 \right] $$
Dividing everything by 2
$$ \dfrac{\vec{r}(t+\Delta t) - \vec{r}(t-\Delta t)}{2} = \vec{v}|_t \Delta t + \dfrac{1}{3!} \left( \dfrac{\mathrm{d^3}}{\mathrm{d^3}t} \vec{r}|_{t} \right) \Delta t^3 $$
Dividing everything by $\Delta t$
$$
\dfrac{\vec{r}(t+\Delta t) - \vec{r}(t-\Delta t)}{2\Delta t} = \vec{v}|_t
+ \dfrac{1}{3!} \left( \dfrac{\mathrm{d^3}}{\mathrm{d^3}t} \vec{r}|_{t} \right) \Delta t^2
$$
So
$$ \vec{v}|_t = \dfrac{\vec{r}(t+\Delta t) - \vec{r}(t-\Delta t)}{2 \Delta t} - O(t^2) $$
where
$$ O(t^2) = \dfrac{1}{3!} \left( \dfrac{\mathrm{d^3}}{\mathrm{d^3}t} \vec{r}|_{t} \right) \Delta t^2 $$
Why does every text report $O(t^2)$ with positive sign?