2
datetime
2012-01-01    125.5010
2012-01-02    NaN
2012-01-03    125.5010
2013-01-04    NaN
2013-01-05    125.5010
2013-02-28    125.5010
2014-02-28    125.5010
2016-01-02    125.5010
2016-01-04    125.5010
2016-02-28    NaN

I would like to fill in the missig values in this dataframe by using a climatology computed from the dataset i.e fill in missing 28th feb 2016 value by averaging values of 28th feb from other years. How do i do this?

1 Answer 1

1

You can use groupby by month and day and transform with fillna mean:

print df.groupby([df.index.month, df.index.day]).transform(lambda x: x.fillna(x.mean()))
datetime           
2012-01-01  125.501
2012-01-02  125.501
2012-01-03  125.501
2013-01-04  125.501
2013-01-05  125.501
2013-02-28  125.501
2014-02-28  125.501
2016-01-02  125.501
2016-01-04  125.501
2016-02-28  125.501
Sign up to request clarification or add additional context in comments.

1 Comment

I have a related query to your solution. plz see stackoverflow.com/questions/34979083/…. In short, doing a groupby-transform, makes some columns disappear.

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.