I have created a simple convolution network using keras that comes packed with tensorflow. I have trained the model and the accuracy looks good.
I have trained the network on 10 different classes. The network is able to differentiate between each of the 10 classes with an accuracy of 0.93.
Now, it is very much possible that there are multiple classes in the same image. Is there a way I could use my trained network to detect multiple objects in the same image? The best thing would be to get the coordinates/bounding-box around the objects detected, so that it is easier to test/visualize.
Here is how I wrote the network:
model = tf.keras.models.Sequential()
model.add(tf.keras.layers.BatchNormalization(input_shape=x_train.shape[1:]))
model.add(tf.keras.layers.Conv2D(64, (5, 5), padding='same', activation='elu'))
model.add(tf.keras.layers.MaxPooling2D(pool_size=(2, 2), strides=(2,2)))
model.add(tf.keras.layers.Dropout(0.25))
model.add(tf.keras.layers.BatchNormalization(input_shape=x_train.shape[1:]))
model.add(tf.keras.layers.Conv2D(128, (5, 5), padding='same', activation='elu'))
model.add(tf.keras.layers.MaxPooling2D(pool_size=(2, 2)))
model.add(tf.keras.layers.Dropout(0.25))
model.add(tf.keras.layers.BatchNormalization(input_shape=x_train.shape[1:]))
model.add(tf.keras.layers.Conv2D(256, (5, 5), padding='same', activation='elu'))
model.add(tf.keras.layers.MaxPooling2D(pool_size=(2, 2), strides=(2,2)))
model.add(tf.keras.layers.Dropout(0.25))
model.add(tf.keras.layers.Flatten())
model.add(tf.keras.layers.Dense(256))
model.add(tf.keras.layers.Activation('elu'))
model.add(tf.keras.layers.Dropout(0.5))
model.add(tf.keras.layers.Dense(10))
model.add(tf.keras.layers.Activation('softmax'))
model.compile(
optimizer=tf.train.AdamOptimizer(learning_rate=1e-3, ),
loss=tf.keras.losses.sparse_categorical_crossentropy,
metrics=['sparse_categorical_accuracy']
)
def train_gen(batch_size):
while True:
offset = np.random.randint(0, x_train.shape[0] - batch_size)
yield x_train[offset:offset+batch_size], y_train[offset:offset + batch_size]
model.fit_generator(
train_gen(512),
epochs=15,
steps_per_epoch=100,
validation_data=(x_valid, y_valid)
)
This works fine. How could I use this network to detect multiple objects from the 10 classes? Would I have re-train the network in someway?