Sequencing the events as presented in question:
int main()
{
Declaration of a and b and value assignment:
int a = 2;
int b = 7;
Here is a trick, the address passed to the parameter int* a is actually of b, and vice-versa on the second parameter:
b = g(&b , &a);
Here just printing values of a and b:
printf("a = %d\n", a);
printf("b = %d\n", b);
return 0;
}
Since the parameters are pointers, the changes made, in the scope of this function, to the variable addresses pointed by them are permanent:
int g(int *a, int *b) {
Here, dereferencing the pointer (*a, the parentheses are not needed in these cases), means you are now working with the value stored in the address pointed by a, so 7 + 3 = 10, now the value stored in the address pointed by a is = 10:
(*a) = (*a) + 3;
Here, the same thing, dereferencing pointers, so 2 * 10 - 2 + 5 = 23, the value stored in the address pointed by b will be 23:
(*b) = 2*(*a) - (*b)+5;
Here printing a = 10 and b = 23, again, dereferencing pointers means you are working with the values stored in the addresses pointed by them:
printf("a = %d, b = %d\n", *a, *b);
The returned value is 10 + 23 = 33, so for b = g(&b, &a), b will be assigned the value of 33, a is already 23 so it stays that way:
return (*a)+(*b);
}