I am trying to write a spatial data structure (such as a K-D tree or a QuadTree) which, given a point, will find the x closest points to it.
The issue with the data structures I mentioned above is that they support mostly a radial/region search. So they will obtain the points that are within a radius of y of a given point/node.
Altering those structures search for what I want would be inefficient. I am assuming I will need to repeat the radial search several times, starting from a short radial distance, and keep increasing it until I have the wanted x amount of points close to the given point. Of course, this defeats the whole purpose behind the data structure.
Almost all spatial data structures operate on radial search. What are other efficient search methods I could apply to a QuadTree, or any other spatial data structures I need to consider to achieve what I mean? Any suggestions?