In fact, this problem is quite interesting because it is a re-cast of an information theoretic framework.
Given 20 numbers, you will end up with 21 bins (including < first one and > last one).
For each incoming number, you are to map to one of these 21 bins. This mapping is done by comparison. Each comparison gives you 1 bit of information (< or >= -- two states).
So suppose the incoming number requires 5 comparisons in order to figure out which bin it belongs to, then it is equivalent to using 5 bits to represent that number.
Our goal is to minimize the number of comparisons! We have 1 million numbers each belonging to 21 ordered code words. How do we do that?
This is exactly an entropy compression problem.
Let a[1],.. a[20], be your 20 numbers.
Let p(n) = pr { incoming number is < n }.
Build the decision tree as follows.
Step 1.
let i = argmin |p(a[i]) - 0.5|
define p0(n) = p(n) / (sum(p(j), j=0...a[i-1])), and p0(n)=0 for n >= a[i].
define p1(n) = p(n) / (sum(p(j), j=a[i]...a[20])), and p1(n)=0 for n < a[i].
Step 2.
let i0 = argmin |p0(a[i0]) - 0.5|
let i1 = argmin |p1(a[i1]) - 0.5|
and so on...
and by the time we're done, we end up with:
i, i0, i1, i00, i01, i10, i11, etc.
each one of these i gives us the comparison position.
so now our algorithm is as follows:
let u = input number.
if (u < a[i]) {
if (u < a[i0]) {
if (u < a[i00]) {
} else {
}
} else {
if (u < a[i01]) {
} else {
}
}
} else {
similarly...
}
so the i's define a tree, and the if statements are walking the tree. we can just as well put it into a loop, but it's easier to illustrate with a bunch of if.
so for example, if you knew that your data were uniformly distributed between 0 and 2^63, and your 20 number were
0,1,2,3,...19
then
i = 20 (notice that there is no i1)
i0 = 10
i00 = 5
i01 = 15
i000 = 3
i001 = 7
i010 = 13
i011 = 17
i0000 = 2
i0001 = 4
i0010 = 6
i0011 = 9
i00110 = 8
i0100 = 12
i01000 = 11
i0110 = 16
i0111 = 19
i01110 = 18
ok so basically, the comparison would be as follows:
if (u < a[20]) {
if (u < a[10]) {
if (u < a[5]) {
} else {
...
}
} else {
...
}
} else {
return 21
}
so note here, that I am not doing binary search! I am first checking the end point. why?
there is 100*((2^63)-20)/(2^63) percent chance that it will be greater than a[20]. this is basically like 99.999999999999999783159565502899% chance!
so this algorithm as it is has an expected number of comparison of 1 for a dataset with the properties specified above! (this is better than log log :p)
notice what I have done here is I am basically using fewer compares to find numbers that are more probable and more compares to find numbers that are less probable. for example, the number 18 requires 6 comparisons (1 more than needed with binary search); however, the numbers 20 to 2^63 require only 1 comparison. this same principle is used for lossless (entropy) data compression -- use fewer bits to encode code words that appear often.
building the tree is a one time process and you can use the tree 1 million times later.
the question is... when does this decision tree become binary search? homework exercise! :p the answer is simple. it's similar to when you can't compress a file any more.
ok, so I didn't pull this out of my behind... the basis is here:
http://en.wikipedia.org/wiki/Arithmetic_coding