94

How can I extract the year, month, day, hour, minute, second and millisecond from an std::chrono::time_point object?

I only saw examples on how to extract the total amount of e.g. seconds from a duration.

3
  • See also Efficient algorithm for converting number of days to years (including leap years) Commented Oct 26, 2022 at 15:32
  • @ali: not a duplicate since that one converts to string while OP question was to extract values Commented Jul 3, 2024 at 14:35
  • @gast128 Indeed but the question has not been closed either. I deleted my previous comment. In any case, thank you for your feedback. Commented Jul 4, 2024 at 15:03

2 Answers 2

143

You can only extract this information from a system_clock::time_point. This is the only system-supplied clock that has a relationship with the civil calendar. Here is how to get the current time_point using this clock:

 system_clock::time_point now = system_clock::now();

You can then convert this to a time_t with:

time_t tt = system_clock::to_time_t(now);

Using the C library you can then convert a time_t to a tm, but you must choose whether you want that conversion to happen in the UTC timezone, or you local timezone:

tm utc_tm = *gmtime(&tt);
tm local_tm = *localtime(&tt);

Then you can print out the components of the tm, for example:

std::cout << local_tm.tm_year + 1900 << '\n';
std::cout << local_tm.tm_mon + 1 << '\n';
std::cout << local_tm.tm_mday << '\n';

Additionally

If you want, you can take advantage of this non-guaranteed information:

Every implementation of system_clock I'm aware of is based on unix time. I.e. the number of seconds since New Years 1970 UTC, neglecting leap seconds. And the precision of this count is usually finer than seconds. Here is a complete program which extracts all of this information:

#include <chrono>
#include <ctime>
#include <iostream>

int
main()
{
    using namespace std;
    using namespace std::chrono;
    typedef duration<int, ratio_multiply<hours::period, ratio<24> >::type> days;
    system_clock::time_point now = system_clock::now();
    system_clock::duration tp = now.time_since_epoch();
    days d = duration_cast<days>(tp);
    tp -= d;
    hours h = duration_cast<hours>(tp);
    tp -= h;
    minutes m = duration_cast<minutes>(tp);
    tp -= m;
    seconds s = duration_cast<seconds>(tp);
    tp -= s;
    std::cout << d.count() << "d " << h.count() << ':'
              << m.count() << ':' << s.count();
    std::cout << " " << tp.count() << "["
              << system_clock::duration::period::num << '/'
              << system_clock::duration::period::den << "]\n";

    time_t tt = system_clock::to_time_t(now);
    tm utc_tm = *gmtime(&tt);
    tm local_tm = *localtime(&tt);
    std::cout << utc_tm.tm_year + 1900 << '-';
    std::cout << utc_tm.tm_mon + 1 << '-';
    std::cout << utc_tm.tm_mday << ' ';
    std::cout << utc_tm.tm_hour << ':';
    std::cout << utc_tm.tm_min << ':';
    std::cout << utc_tm.tm_sec << '\n';
}

It is handy to create a custom duration to model days:

typedef duration<int, ratio_multiply<hours::period, ratio<24> >::type> days;

Now you can get the time since the epoch, to as fine a precision as it can manage, with:

system_clock::duration tp = now.time_since_epoch();

Then truncate it to days, and subtract that off.

Then truncate it to hours, and subtract that off.

Continue until you've subtracted off the seconds.

What you're left with is the fraction of a second with the units of system_clock::duration. So print out that run time value and the compile time units of that value as shown.

For me this program prints out:

15806d 20:31:14 598155[1/1000000]
2013-4-11 20:31:14

My output indicates the system_clock::duration precision is microseconds. If desired, that can be truncated to milliseconds with:

milliseconds ms = duration_cast<milliseconds>(tp);

Update

This header-only C++11/14 library encapsulates the work above, reducing client work down to:

#include "date.h"
#include <iostream>

int
main()
{
    // Reduce verbosity but let you know what is in what namespace
    namespace C = std::chrono;
    namespace D = date;
    namespace S = std;

    auto tp = C::system_clock::now(); // tp is a C::system_clock::time_point
    {
        // Need to reach into namespace date for this streaming operator
        using namespace date;
        S::cout << tp << '\n';
    }
    auto dp = D::floor<D::days>(tp);  // dp is a sys_days, which is a
                                      // type alias for a C::time_point
    auto ymd = D::year_month_day{dp};
    auto time = D::make_time(C::duration_cast<C::milliseconds>(tp-dp));
    S::cout << "year        = " << ymd.year() << '\n';
    S::cout << "month       = " << ymd.month() << '\n';
    S::cout << "day         = " << ymd.day() << '\n';
    S::cout << "hour        = " << time.hours().count() << "h\n";
    S::cout << "minute      = " << time.minutes().count() << "min\n";
    S::cout << "second      = " << time.seconds().count() << "s\n";
    S::cout << "millisecond = " << time.subseconds().count() << "ms\n";
}

Which just output for me:

2015-07-10 20:10:36.023017
year        = 2015
month       = Jul
day         = 10
hour        = 20h
minute      = 10min
second      = 36s
millisecond = 23ms

Another Update

This library grew into a C++ standards proposal and is now in the C++20 working draft. The syntax for extracting these fields from a system_clock::time_point in C++20 will be:

#include <chrono>

int
main()
{
    using namespace std::chrono;
    auto tp = system_clock::now();
    auto dp = floor<days>(tp);
    year_month_day ymd{dp};
    hh_mm_ss time{floor<milliseconds>(tp-dp)};
    auto y = ymd.year();
    auto m = ymd.month();
    auto d = ymd.day();
    auto h = time.hours();
    auto M = time.minutes();
    auto s = time.seconds();
    auto ms = time.subseconds();
}

The above assumes you want these fields in UTC. If you prefer them in some other time zone, that will also be possible. For example, here is how to do it in your computer's current local time zone:

#include <chrono>

int
main()
{
    using namespace std::chrono;
    auto tp = zoned_time{current_zone(), system_clock::now()}.get_local_time();
    auto dp = floor<days>(tp);
    year_month_day ymd{dp};
    hh_mm_ss time{floor<milliseconds>(tp-dp)};
    auto y = ymd.year();
    auto m = ymd.month();
    auto d = ymd.day();
    auto h = time.hours();
    auto M = time.minutes();
    auto s = time.seconds();
    auto ms = time.subseconds();
}

The only difference above is the construction of tp which now has type local_time as opposed to sys_time in the UTC example. Alternatively one could have picked an arbitrary time zone with this small change:

auto tp = zoned_time{"Europe/London", system_clock::now()}.get_local_time();
Sign up to request clarification or add additional context in comments.

28 Comments

Fwiw, the weekend-time I mention in my comment above this one produced this: home.roadrunner.com/~hinnant/date_algorithms.html It is not a date proposal. But it might help someone else create a date proposal.
Date library published as a GitHub repo here: github.com/HowardHinnant/date
tm local_tm = *localtime(&tt); is not thread-safe in general (although it is in Windows)
@BitTickler: decltype(std::chrono::system_clock::now()) is std::chrono::system_clock::time_point, not system_clock::duration. If you would like to learn about the <chrono> library, I can help. If you just want to rant, please educate yourself enough to rant with facts.
Usually people ask detailed questions with a Stack Overflow Question. The comment section does not leave enough room or formatting flexibility to make question/answer efficient. However I can recommend a basic C++11 chrono tutorial: youtube.com/watch?v=P32hvk8b13M and a view of the new C++20 chrono facilities: youtube.com/watch?v=adSAN282YIw
|
1

Once I came up with this implementation. Might not be the best but works fine for my home-grown project.

One can get everything but milliseconds from timeinfo and milliseconds from ms.

static std::wstring GetDateTime()
{
    time_t rawtime;
    struct tm timeinfo;
    wchar_t buffer[20];

    time(&rawtime);
    localtime_s(&timeinfo, &rawtime);

    auto now = std::chrono::system_clock::now();
    auto tt = std::chrono::system_clock::to_time_t(now);
    auto nowTruncated = std::chrono::system_clock::from_time_t(tt);
    auto ms = (now - nowTruncated).count();

    wcsftime(buffer, 20, L"%Y-%m-%d %H:%M:%S", &timeinfo);

    return std::wstring(buffer) + L"." + std::to_wstring(ms).substr(0, 3);
}

Example output:

2021-06-25 10:18:48.295

Comments

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.