I need to search array (MatND object) across the whole array to get where's 5% of MAX value. minMaxLoc function returns me MAX value but I don't know hot to search it by my self.
Any ideas?
If it is an uchar Mat
/**
* @param : input image
* @hist : histogram
* @nmin : total minimum pixels number
* @nmax : total maximum pixels number
* @channel : channel number
*
* ex : images with 1000 pixels, 50 equal to 5% of it
*/
std::pair<size_t, size_t> get_quantile_uchar(cv::Mat &input, cv::MatND &hist, size_t nmin, size_t nmax, int channel)
{
int const hist_size = std::numeric_limits<uchar>::max() + 1;
float const hranges[2] = {0, 255};
float const *ranges[] = {hranges};
//compute and cumulate the histogram
cv::calcHist(&input, 1, &channel, cv::Mat(), hist, 1, &hist_size, ranges);
auto *hist_ptr = hist.ptr<float>(0);
for(size_t i = 1; i != hist_size; ++i){
hist_ptr[i] += hist_ptr[i - 1];
}
// get the new min/max
std::pair<size_t, size_t> min_max(0, hist_size - 1);
while(min_max.first != (hist_size - 1) && hist_ptr[min_max.first] <= nmin){
++min_max.first; // the corresponding histogram value is the current cell position
}
while(min_max.second > 0 && hist_ptr[min_max.second] > nmax){
--min_max.second; // the corresponding histogram value is the current cell position
}
if (min_max.second < hist_size - 2)
++min_max.second;
return min_max;
}
Example, if there are an Mat(100 * 100) with value within 0~255, you could measure the top 5% percentile and lowest 3% percentile like this
auto const result = get_quantile(input, hist, input.total * 0.03, input.total * 0.95, 0);
if it is not an uchar Mat, then you can sort the channel you want to measure first
/**
* @brief generic algorithm for other channel types except of uchar
* @param input the input image
* @param output the output image
* @param smin total number of minimum pixels
* @param smax total number maximum pixels
* @param channel the channel used to compute the histogram
*
* This algorithm only support uchar channel and float channel by now
*/
template<typename T>
std::pair<T, T> get_quantile(cv::Mat &input, size_t smin, size_t smax, int channel)
{
std::vector<float> temp_input = copy_to_one_dim_array_ch<float>(input, channel);
std::sort(std::begin(temp_input), std::end(temp_input));
return std::pair<T, T>(temp_input[smin], temp_input[temp_input.size() - 1 - smax]);
}
The next problem is how to implement the function copy_to_one_dim_array_ch
/*
* experimental version for cv::Mat, try to alleviate the problem
* of code bloat.User should make sure the space of begin point to
* have enough of spaces.
*/
template<typename T, typename InputIter>
void copy_to_one_dim_array_ch(cv::Mat const &src, InputIter begin, int channel)
{
int const channel_number = src.channels();
if(channel_number <= channel || channel < 0){
throw std::out_of_range("channel value is invalid\n" + std::string(__FUNCTION__) +
"\n" + std::string(__FILE__));
}
for(int row = 0; row != src.rows; ++row){
auto ptr = src.ptr<T>(row) + channel;
for(int col = 0; col != src.cols; ++col){
*begin = *ptr;
++begin;
ptr += channel_number;
}
}
}
template<typename T>
std::vector<T> const copy_to_one_dim_array_ch(cv::Mat const &src, int channel)
{
std::vector<T> result(src.total());
copy_to_one_dim_array_ch<T>(src, std::begin(result), channel);
return result;
}
Some features need c++11 support, and the function copy_to_one_dim_array_ch do not support nonbyte image
If you want to make it become easier to use, you could
1 : wrap those function in a class.
2 : apply full specialization on uchar Mat
3 : wrap the class in a function