(the problem is embarrassingly parallel)
Consider an array of 12 cells:
|__|__|__|__|__|__|__|__|__|__|__|__|
and four (4) CPUs.
Naively, I would run 4 parallel jobs and feeding 3 cells to each CPU.
|__|__|__|__|__|__|__|__|__|__|__|__|
=========|========|========|========|
1 CPU 2 CPU 3 CPU 4 CPU
BUT, it appears, that each cell has different evaluation time, some cells are evaluated very quickly, and some are not.
So, instead of wasting "relaxed CPU", I think to feed EACH cell to EACH CPU at time and continue until the entire job is done.
Namely:
at the beginning:
|____|____|____|____|____|____|____|____|____|____|____|____|
1cpu 2cpu 3cpu 4cpu
if, 2cpu finished his job at cell "2", it can jump to the first empty cell "5" and continue working:
|____|done|____|____|____|____|____|____|____|____|____|____|
1cpu 3cpu 4cpu 2cpu
|-------------->
if 1cpu finished, it can take sixth cell:
|done|done|____|____|____|____|____|____|____|____|____|____|
3cpu 4cpu 2cpu 1cpu
|------------------------>
and so on, until the full array is done.
QUESTION:
I do not know a priori which cell is "quick" and which cell is "slow", so I cannot spread cpus according to the load (more cpus to slow, less to quick). How one can implement such algorithm for dynamic evaluation with MPI?
Thanks!!!!!
UPDATE
I use a very simple approach, how to divide the entire job into chunks, with IO-MPI:
given: array[NNN] and nprocs - number of available working units:
for (int i=0;i<NNN/nprocs;++i)
{
do_what_I_need(start+i);
}
MPI_File_write(...);
where "start" corresponds to particular rank number. In simple words, I divide the entire NNN array into fixed size chunk according to the number of available CPU and each CPU performs its chunk, writes the result to (common) output and relaxes.
IS IT POSSIBLE to change the code (Not to completely re-write in terms of Master/Slave paradigm) in such a way, that each CPU will get only ONE iteration (and not NNN/nprocs) and after it completes its job and writes its part to the file, will Continue to the next cell and not to relax.
Thanks!
TryEnterCriticalSection()that could be used to create the behavior you described. I have no experience with MPI, but it may have a similar function.