In pandas how do I split Series/dataframe into two Series/DataFrames where odd rows in one Series, even rows in different? Right now I am using
rng = range(0, n, 2)
odd_rows = df.iloc[rng]
This is pretty slow.
Use slice:
In [11]: s = pd.Series([1,2,3,4])
In [12]: s.iloc[::2] # even
Out[12]:
0 1
2 3
dtype: int64
In [13]: s.iloc[1::2] # odd
Out[13]:
1 2
3 4
dtype: int64
Here's some comparisions
In [100]: df = DataFrame(randn(100000,10))
simple method (but I think range makes this slow), but will work regardless of the index (e.g. does not have to be a numeric index)
In [96]: %timeit df.iloc[range(0,len(df),2)]
10 loops, best of 3: 21.2 ms per loop
The following require an Int64Index that is range based (which is easy to get, just reset_index()).
In [107]: %timeit df.iloc[(df.index % 2).astype(bool)]
100 loops, best of 3: 5.67 ms per loop
In [108]: %timeit df.loc[(df.index % 2).astype(bool)]
100 loops, best of 3: 5.48 ms per loop
make sure to give it index positions
In [98]: %timeit df.take(df.index % 2)
100 loops, best of 3: 3.06 ms per loop
same as above but no conversions on negative indicies
In [99]: %timeit df.take(df.index % 2,convert=False)
100 loops, best of 3: 2.44 ms per loop
This winner is @AndyHayden soln; this only works on a single dtype
In [118]: %timeit DataFrame(df.values[::2],index=df.index[::2])
10000 loops, best of 3: 63.5 us per loop