This is what is happening. You have a long rod, you are dividing it into two. Then you take these two parts and divide it into two. You do this with each sub-part until the length of that part becomes 1.
How would you do that?
Assume you have to break the rod at mid point. We will put the marks to cut in bins for further cuts. Note: each part spawns two new parts so we need 2n boxes to store sub-parts.
len = pow (2, b-a+1) // +1 might not be needed
ar = int[len] // large array will memoize my marks to cut
ar[0] = a // first mark
ar[1] = b // last mark
start_ptr = 0 // will start from this point
end_ptr = 1 // will end to this point
new_end = end_ptr // our end point will move for cuts
while true: //loop endlessly, I do not know, may there is a limit
while start_ptr < end_ptr: // look into bins
i = ar[start_ptr] //
j = ar[start_ptr+1] // pair-wise ends
if j - i > 1 // if lengthier than unit length, then add new marks
mid = floor ( (i+j) / 2 ) // this is my mid
print mid
ar[++new_end] = i // first mark --|
ar[++new_end] = mid - 1 // mid - 1 mark --+-- these two create one pair
ar[++new_end] = mid + 1 // 2nd half 1st mark --|
ar[++new_end] = j // end mark --+-- these two create 2nd pair
start_ptr = start_ptr + 2 // jump to next two ends
if end_ptr == new_end // if we passed to all the pairs and no new pair
break // was created, we are done.
else
end_ptr = new_end //else, start from sub prolem
PS: I haven't tried this code. This is just a pseudo code. It seems to me that it should do the job. Let me know if you try it out. It will validate my algorithm. It is basically a b-tree in an array.