At the moment I'm dealing with a delightful legacy code class implementing polymorphism by switch-case:
class LegacyClass {
public:
enum InitType {TYPE_A, TYPE_B};
void init(InitType type) {m_type=type;}
int foo() {
if (m_type==TYPE_A)
{
/* ...A-specific work... */
return 1;
}
// else, TYPE_B:
/* ...B-specific work... */
return 2;
}
/** Lots more functions like this **/
private:
InitType m_type;
};
I'd like to refactor this to proper polymorphism, e.g.:
class RefactoredClass {
public:
virtual ~RefactoredClass(){}
virtual int foo()=0;
};
class Class_ImplA : public RefactoredClass {
public:
virtual ~Class_ImplA(){}
int foo() {
/* ...A-specific work... */
return 1;
}
};
class Class_ImplB : public RefactoredClass {
public:
virtual ~Class_ImplB(){}
int foo() {
/* ...B-specific work... */
return 2;
}
};
Unfortunately, I have one crucial problem: due to optimization and architectural considerations, within a primary use of LegacyClass, I cannot use dynamic allocation; the instance is a member of a different class by composition:
class BigImportantClass{
/* ... */
private:
LegacyClass m_legacy;
}
(In this example, BigImportantClass may be dynamically allocated, but the allocation needs to be in one continuous virtual segment, and a single new() call; I can't make further calls to new() in the BigImportantClass ctor or in subsequent initialization methods.)
Is there a good way to initialize a concrete implementation, polymorphically, without using new()?
My own progress so far: What I can do is provide a char[] buffer as a member of BigImportantClass, and somehow initialize a concrete member of RefactoredClass in that memory. The buffer would be large enough to accommodate all implementations of RefactoredClass. However, I do not know how to do this safely. I know the placement-new syntax, but I'm new to dealing with alignment (hence, warned off by the C++-FAQ...), and aligning generically for all concrete implementations of the RefactoredClass interface sounds daunting. Is this the way to go? Or do I have any other options?
BigImportantClassconstructor, you might be able to use a template.BigImportantClassbecomesBigImportantClass<TYPE_A>). It's definitely an option, though.CreateBigImportantClass(), which can even be a static member.char[]inBigImportantClass, replaceLegacyClasswith a class than embeds an aligned buffer. You can probably get away using a union of adoubleandchar[]- hardly anything needs more alignment thandouble. The Replacement class should have a function to get a reference or pointer to the placement-newed object.