I'm performing a stepwise model selection, progressively dropping variables with a variance inflation factor over a certain threshold.
In order to do this, I'm running OLS many, many times on datasets ranging from a few hundred MB to 10 gigs.
What is the quickest implementation of OLS would be for larger datasets? The Statsmodel OLS implementation seems to be using numpy to invert matrices. Would a gradient descent based method be quicker? Does scikit-learn have an especially quick implementation?
Or maybe an mcmc based approach using pymc is quickest...
Update 1: Seems that the scikit learn implementation of LinearRegression is a wrapper for the scipy implementation.
Update 2: Scipy OLS via scikit learn LinearRegression is twice as fast as statsmodels OLS in my very limited tests...