I want to generate a Gaussian distribution in Python with the x and y dimensions denoting position and the z dimension denoting the magnitude of a certain quantity.
The distribution has a maximum value of 2e6 and a standard deviation sigma=0.025.
In MATLAB I can do this with:
x1 = linspace(-1,1,30);
x2 = linspace(-1,1,30);
mu = [0,0];
Sigma = [.025,.025];
[X1,X2] = meshgrid(x1,x2);
F = mvnpdf([X1(:) X2(:)],mu,Sigma);
F = 314159.153*reshape(F,length(x2),length(x1));
surf(x1,x2,F);
In Python, what I have so far is:
x = np.linspace(-1,1,30)
y = np.linspace(-1,1,30)
mu = (np.median(x),np.median(y))
sigma = (.025,.025)
There is a Numpy function numpy.random.multivariate_normal what can supposedly do the same as MATLAB's mvnpdf, but I am struggling to undestand the documentation. Especially in obtaining the covariance matrix needed by numpy.random.multivariate_normal.

numpy.random.multivariate_normal()does the same thing, because it does not give you the pdf of the distribution, it just draws random numbers from the distribution defined in the covariance matrix as well as the expectation values mu.