I have a 3D numpy array like a = np.zeros((100,100, 20)). I want to perform an operation over every x,y position that involves all the elements over the z axis and the result is stored in an array like b = np.zeros((100,100)) on the same corresponding x,y position.
Now i'm doing it using a for loop:
d_n = np.array([...]) # a parameter with the same shape as b
for (x,y), v in np.ndenumerate(b):
C = a[x,y,:]
### calculate some_value using C
minv = sys.maxint
depth = -1
C = a[x,y,:]
for d in range(len(C)):
e = 2.5 * float(math.pow(d_n[x,y] - d, 2)) + C[d] * 0.05
if e < minv:
minv = e
depth = d
some_value = depth
if depth == -1:
some_value = len(C) - 1
###
b[x,y] = some_value
The problem now is that this operation is much slower than others done the pythonic way, e.g. c = b * b (I actually profiled this function and it's around 2 orders of magnitude slower than others using numpy built in functions and vectorized functions, over a similar number of elements)
How can I improve the performance of such kind of functions mapping a 3D array to a 2D one?