4

My data has ages, and also payments per month.

I'm trying to aggregate summing the payments, but without summing the ages (averaging would work).

Is it possible to use different functions for different columns?

1
  • Yes, thank you. -------------------------------------------------- | Date | Recovery | Age of person | ---------------------------------------------- | Jan | 500 | 26 | | Feb | 400 | 26 | | Mar | 1000 | 26 | Commented Mar 18, 2015 at 16:28

1 Answer 1

7

You can pass a dictionary to agg with column names as keys and the functions you want as values.

import pandas as pd
import numpy as np

# Create some randomised data
N = 20
date_range = pd.date_range('01/01/2015', periods=N, freq='W')
df = pd.DataFrame({'ages':np.arange(N), 'payments':np.arange(N)*10}, index=date_range)

print(df.head())
#             ages  payments
# 2015-01-04     0         0
# 2015-01-11     1        10
# 2015-01-18     2        20
# 2015-01-25     3        30
# 2015-02-01     4        40

# Apply np.mean to the ages column and np.sum to the payments.
agg_funcs = {'ages':np.mean, 'payments':np.sum}

# Groupby each individual month and then apply the funcs in agg_funcs
grouped = df.groupby(df.index.to_period('M')).agg(agg_funcs)

print(grouped)
#          ages  payments
# 2015-01   1.5        60
# 2015-02   5.5       220
# 2015-03  10.0       500
# 2015-04  14.5       580
# 2015-05  18.0       540
Sign up to request clarification or add additional context in comments.

Comments

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.