As already said, deleteif((tail x) f) is parsed as deleteif (tail x f), which means tail is applied to the two arguments x and f, and the result would then be passed on as the single argument to deleteif. What you want is deleteif (tail x) f, which is equivalent to (deleteif (tail x)) f and what most languages1 would write deleteif(tail x, f).
This parsing order may seem confusing initially, but it turns out to be really useful in practice. The general name for the technique is Currying.
- For one thing, it allows you to write dense statements without needing many parentheses – in fact
deleteif (tail x f) could also be written deleteif $ tail x f.
- More importantly, because the arguments don't need to be “encased” in a single tuple, you don't need to supply them all at once but automatically get partial application when you apply to only one argument. For instance, you could use this function like that:
deleteif (>4) [1,3,7,5,2,9,7] to yield [7,5,9,7]. This works by partially applying the function2 > to 4, leaving a single-argument function which can be used to filter the list.
1Indeed, this style is possible in Haskell as well: just write the signatures of such multi-argument functions as deleteif :: ([Int], Int->Bool) -> [Int]. Or write uncurry deleteif (tail x, f). But it's definitely better you get used to the curried style!
2Actually, > is an infix which behaves a bit different – you can partially apply it to either side, i.e. you can also write deleteif (4>) [1,3,7,5,2,9,7] to get [1,3,2].
fun arg1 arg2 ..., notfun(arg1, arg2 ...).