9

I have data represented in the figure.

enter image description here

The curves were extrapolated and I have a line whose equation is known. The equation of curves are unknown. Now, how do I find the points of intersection of this line with each of the curves?

The reproducible code:

import numpy as np
import matplotlib.pyplot as plt
from scipy import interpolate


x = np.array([[0.12, 0.11, 0.1, 0.09, 0.08],
              [0.13, 0.12, 0.11, 0.1, 0.09],
              [0.15, 0.14, 0.12, 0.11, 0.1],
              [0.17, 0.15, 0.14, 0.12, 0.11],
              [0.19, 0.17, 0.16, 0.14, 0.12],
              [0.22, 0.19, 0.17, 0.15, 0.13],
              [0.24, 0.22, 0.19, 0.16, 0.14],
              [0.27, 0.24, 0.21, 0.18, 0.15],
              [0.29, 0.26, 0.22, 0.19, 0.16]])

y = np.array([[71.64, 78.52, 84.91, 89.35, 97.58],
              [66.28, 73.67, 79.87, 85.36, 93.24],
              [61.48, 69.31, 75.36, 81.87, 89.35],
              [57.61, 65.75, 71.7, 79.1, 86.13],
              [55.12, 63.34, 69.32, 77.29, 83.88],
              [54.58, 62.54, 68.7, 76.72, 82.92],
              [56.58, 63.87, 70.3, 77.69, 83.53],
              [61.67, 67.79, 74.41, 80.43, 85.86],
              [70.08, 74.62, 80.93, 85.06, 89.84]])


x1 = np.linspace(0, 0.4, 100)
y1 = -100 * x1 + 100
plt.figure(figsize = (5.15,5.15))
plt.subplot(111)
for i in range(5):
    x_val = np.linspace(x[0, i] - 0.05, x[-1, i] + 0.05, 100)
    x_int = np.interp(x_val, x[:, i], y[:, i])
    poly = np.polyfit(x[:, i], y[:, i], deg=2)
    y_int  = np.polyval(poly, x_val)
    plt.plot(x[:, i], y[:, i], linestyle = '', marker = 'o')
    plt.plot(x_val, y_int, linestyle = ':', linewidth = 0.25, color =  'black')
plt.plot(x1, y1, linestyle = '-.', linewidth = 0.5, color =  'black')


plt.xlabel('X')
plt.ylabel('Y')
plt.show()

1 Answer 1

17

We do know the equations of the curves. They are of the form a*x**2 + b*x + c, where a,b, and c are the elements of the vector returned by np.polyfit. Then we just need to find the roots of a quadratic equation in order to find the intersections:

def quadratic_intersections(p, q):
    """Given two quadratics p and q, determines the points of intersection"""
    x = np.roots(np.asarray(p) - np.asarray(q))
    y = np.polyval(p, x)
    return x, y

The above function isn't super robust: there doesn't need to be a real root, and it doesn't really check for that. You're free to make it better.

Anyways, we give quadratic_intersections two quadratics, and it returns the two points of intersection. Putting it into your code, we have:

x1 = np.linspace(0, 0.4, 100)
y1 = -100 * x1 + 100
plt.figure(figsize = (7,7))
plt.subplot(111)

plt.plot(x1, y1, linestyle = '-.', linewidth = 0.5, color =  'black')
for i in range(5):
    x_val = np.linspace(x[0, i] - 0.05, x[-1, i] + 0.05, 100)
    poly = np.polyfit(x[:, i], y[:, i], deg=2)
    y_int  = np.polyval(poly, x_val)
    plt.plot(x[:, i], y[:, i], linestyle = '', marker = 'o')
    plt.plot(x_val, y_int, linestyle = ':', linewidth = 0.25, color =  'black')
    ix = quadratic_intersections(poly, [0, -100, 100])
    plt.scatter(*ix, marker='x', color='black', s=40, linewidth=2)

plt.xlabel('X')
plt.ylabel('Y')
plt.xlim([0,.35])
plt.ylim([40,110])
plt.show()

This makes the following figure:

enter image description here

Now, if you don't know that the functions you are dealing with are polynomials, you can use the optimization tools in scipy.optimize to find the root. For example:

import scipy.optimize
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.style

matplotlib.style.use('fivethirtyeight')
%matplotlib inline

f = lambda x: np.cos(x) - x
g = np.sin

h = lambda x: f(x) - g(x)

x = np.linspace(0,3,100)
plt.plot(x, f(x), zorder=1)
plt.plot(x, g(x), zorder=1)

x_int = scipy.optimize.fsolve(h, 1.0)
y_int = f(x_int)

plt.scatter(x_int, y_int, marker='x', s=150, zorder=2, 
            linewidth=2, color='black')

plt.xlim([0,3])
plt.ylim([-4,2])

Which plots:

enter image description here

Sign up to request clarification or add additional context in comments.

8 Comments

This is great, but in case I have an unknown function, what can be done?
can you share your mpl config file? I find this plot very beautiful ^^
Might be better to return separate coordinate arrays from quadratic_intersections, for example x = np.roots(np.asarray(p) - q); y = np.polyval(p, x); return x, y.
@Juanlu001 I'm just using the fivethirtyeight style file that comes with recent versions of matplotlib. That is, import matplotlib.style; matplot.style.use('fivethirtyeight').
@nxkryptor What do you mean by "unknown function"? Which function is unknown? What is known about it?
|

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.