I am using the new Apache Spark version 1.4.0 Data-frames API to extract information from Twitter's Status JSON, mostly focused on the Entities Object - the relevant part to this question is showed below:
{
...
...
"entities": {
"hashtags": [],
"trends": [],
"urls": [],
"user_mentions": [
{
"screen_name": "linobocchini",
"name": "Lino Bocchini",
"id": 187356243,
"id_str": "187356243",
"indices": [ 3, 16 ]
},
{
"screen_name": "jeanwyllys_real",
"name": "Jean Wyllys",
"id": 111123176,
"id_str": "111123176",
"indices": [ 79, 95 ]
}
],
"symbols": []
},
...
...
}
There are several examples on how extract information from primitives types as string, integer, etc - but I couldn't find anything on how to process those kind of complex structures.
I tried the code below but it is still doesn't work, it throws an Exception
val sqlContext = new org.apache.spark.sql.hive.HiveContext(sc)
val tweets = sqlContext.read.json("tweets.json")
// this function is just to filter empty entities.user_mentions[] nodes
// some tweets doesn't contains any mentions
import org.apache.spark.sql.functions.udf
val isEmpty = udf((value: List[Any]) => value.isEmpty)
import org.apache.spark.sql._
import sqlContext.implicits._
case class UserMention(id: Long, idStr: String, indices: Array[Long], name: String, screenName: String)
val mentions = tweets.select("entities.user_mentions").
filter(!isEmpty($"user_mentions")).
explode($"user_mentions") {
case Row(arr: Array[Row]) => arr.map { elem =>
UserMention(
elem.getAs[Long]("id"),
elem.getAs[String]("is_str"),
elem.getAs[Array[Long]]("indices"),
elem.getAs[String]("name"),
elem.getAs[String]("screen_name"))
}
}
mentions.first
Exception when I try to call mentions.first:
scala> mentions.first
15/06/23 22:15:06 ERROR Executor: Exception in task 0.0 in stage 5.0 (TID 8)
scala.MatchError: [List([187356243,187356243,List(3, 16),Lino Bocchini,linobocchini], [111123176,111123176,List(79, 95),Jean Wyllys,jeanwyllys_real])] (of class org.apache.spark.sql.catalyst.expressions.GenericRowWithSchema)
at $line37.$read$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$anonfun$1.apply(<console>:34)
at $line37.$read$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$anonfun$1.apply(<console>:34)
at scala.Function1$$anonfun$andThen$1.apply(Function1.scala:55)
at org.apache.spark.sql.catalyst.expressions.UserDefinedGenerator.eval(generators.scala:81)
What is wrong here? I understand it is related to the types but I couldn't figure out it yet.
As additional context, the structure mapped automatically is:
scala> mentions.printSchema
root
|-- user_mentions: array (nullable = true)
| |-- element: struct (containsNull = true)
| | |-- id: long (nullable = true)
| | |-- id_str: string (nullable = true)
| | |-- indices: array (nullable = true)
| | | |-- element: long (containsNull = true)
| | |-- name: string (nullable = true)
| | |-- screen_name: string (nullable = true)
NOTE 1: I know it is possible to solve this using HiveQL but I would like to use Data-frames once there is so much momentum around it.
SELECT explode(entities.user_mentions) as mentions
FROM tweets
NOTE 2: the UDF val isEmpty = udf((value: List[Any]) => value.isEmpty) is a ugly hack and I'm missing something here, but was the only way I came up to avoid a NPE
case Row(arr: Array[Row])does not match your input.ListandArraybut either way I get the same error.