There is no such thing as a vector of functions. There are 6 atomic vector types in R: raw, logical, integer, double, complex, and character, plus there is the heterogeneous list type, and finally there is the lesser known expression type, which is basically a vector of parse trees (such as you get from a call to the substitute() function). Those are all the vector types in R.
printAndType <- function(x) { print(x); typeof(x); };
printAndType(as.raw(1:3));
## [1] 01 02 03
## [1] "raw"
printAndType(c(T,F));
## [1] TRUE FALSE
## [1] "logical"
printAndType(1:3);
## [1] 1 2 3
## [1] "integer"
printAndType(as.double(1:3));
## [1] 1 2 3
## [1] "double"
printAndType(c(1i,2i,3i));
## [1] 0+1i 0+2i 0+3i
## [1] "complex"
printAndType(letters[1:3]);
## [1] "a" "b" "c"
## [1] "character"
printAndType(list(c(T,F),1:3,letters[1:3]));
## [[1]]
## [1] TRUE FALSE
##
## [[2]]
## [1] 1 2 3
##
## [[3]]
## [1] "a" "b" "c"
##
## [1] "list"
printAndType(expression(a+1,sum(1,2+3*4),if (T) 1 else 2));
## expression(a + 1, sum(1, 2 + 3 * 4), if (T) 1 else 2)
## [1] "expression"
If you want to store multiple functions in a single object, you have to use a list, and you must use the double-bracket indexing operator in the lvalue to assign to it:
fl <- list();
for (i in 1:3) fl[[i]] <- (function(i) { force(i); function(a) a+i; })(i);
fl;
## [[1]]
## function (a)
## a + i
## <environment: 0x600da11a0>
##
## [[2]]
## function (a)
## a + i
## <environment: 0x600da1ab0>
##
## [[3]]
## function (a)
## a + i
## <environment: 0x600da23f8>
sapply(fl,function(f) environment(f)$i);
## [1] 1 2 3
sapply(fl,function(f) f(3));
## [1] 4 5 6
In the above code I also demonstrate the proper way to closure around a loop variable. This requires creating a temporary function evaluation environment to hold a copy of i, and the returned function will then closure around that evaluation environment so that it can access the iteration-specific i. This holds true for other languages that support dynamic functions and closures, such as JavaScript. In R there is an additional requirement of forcing the promise to be resolved via force(), otherwise, for each generated function independently, the promise wouldn't be resolved until the first evaluation of that particular generated function, which would at that time lock in the current value of the promise target (the global i variable in this case) for that particular generated function. It should also be mentioned that this is an extremely wasteful design, to generate a temporary function for every iteration and evaluate it, which generates a new evaluation environment with a copy of the loop variable.
If you wanted to use this design then your code would become:
coc_glm_f <- list();
for (i in 1:nrow(coc_comp_model)) {
coc_glm_f[[i]] <- (function(i) { force(i); function(x) x*coc_comp_model$Gradient[i] + coc_comp_model$`Y-Intercept`[i]; })(i);
};
However, it probably doesn't make sense to create a separate function for every row of the data.frame. If you intended the x parameter to take a scalar value (by which I mean a one-element vector), then you can define the function as follows:
coc_glm_f <- function(x) x*coc_comp_model$Gradient + coc_comp_model$`Y-Intercept`;
This function is vectorized, meaning you can pass a vector for x, where each element of x would correspond to a row of coc_comp_model. For example:
coc_comp_model <- data.frame(Relationship=c('DG-r ~ DG-cl','CA3-r ~ CA3-cl','CA2-r ~ CA2-cl'),Output=c('DG-r','CA3-r','CA2-r'),Input=c('DG-cl','CA3-cl','CA2-cl'),`|r-Value|`=c(0.8271167,0.7461309,0.9732584),`Y-Intercept`=c(0.0027217513,0.0350767684,-0.0040992226),Gradient=c(12.9901380,27.6107963,35.8299582),check.names=F);
coc_glm_f(seq_len(nrow(coc_comp_model)));
## [1] 12.99286 55.25667 107.48578