1

I have the following data frame:

> coc_comp_model[1:3,]
    Relationship Output  Input |r-Value|   Y-Intercept   Gradient
1   DG-r ~ DG-cl   DG-r  DG-cl 0.8271167  0.0027217513 12.9901380
2 CA3-r ~ CA3-cl  CA3-r CA3-cl 0.7461309  0.0350767684 27.6107963
3 CA2-r ~ CA2-cl  CA2-r CA2-cl 0.9732584 -0.0040992226 35.8299582

I want to create simple functions for each row of the data frame. here's what I've tried:

for(i in 1:nrow(coc_comp_model)) {
coc_glm_f[i] <- function(x)
x*coc_comp_model$Gradient[i] + coc_comp_model$Y-Intercept[i]
}

also tried making a vector of functions, which also does ont work either.

Thanks for reading this/helping.

2 Answers 2

2

Something like this:

myfunc<-function(datrow, x){
  x*as.numeric(datrow[6]) + as.numeric(datrow[5] )
}

Then you can use apply to call it on each row, changing x as desired:

apply(hzdata, 1, myfunc, x = 0.5)

note: using dput() to share your data is much easier than a pasting in a subset.

Sign up to request clarification or add additional context in comments.

Comments

2

There is no such thing as a vector of functions. There are 6 atomic vector types in R: raw, logical, integer, double, complex, and character, plus there is the heterogeneous list type, and finally there is the lesser known expression type, which is basically a vector of parse trees (such as you get from a call to the substitute() function). Those are all the vector types in R.

printAndType <- function(x) { print(x); typeof(x); };
printAndType(as.raw(1:3));
## [1] 01 02 03
## [1] "raw"
printAndType(c(T,F));
## [1]  TRUE FALSE
## [1] "logical"
printAndType(1:3);
## [1] 1 2 3
## [1] "integer"
printAndType(as.double(1:3));
## [1] 1 2 3
## [1] "double"
printAndType(c(1i,2i,3i));
## [1] 0+1i 0+2i 0+3i
## [1] "complex"
printAndType(letters[1:3]);
## [1] "a" "b" "c"
## [1] "character"
printAndType(list(c(T,F),1:3,letters[1:3]));
## [[1]]
## [1]  TRUE FALSE
##
## [[2]]
## [1] 1 2 3
##
## [[3]]
## [1] "a" "b" "c"
##
## [1] "list"
printAndType(expression(a+1,sum(1,2+3*4),if (T) 1 else 2));
## expression(a + 1, sum(1, 2 + 3 * 4), if (T) 1 else 2)
## [1] "expression"

If you want to store multiple functions in a single object, you have to use a list, and you must use the double-bracket indexing operator in the lvalue to assign to it:

fl <- list();
for (i in 1:3) fl[[i]] <- (function(i) { force(i); function(a) a+i; })(i);
fl;
## [[1]]
## function (a)
## a + i
## <environment: 0x600da11a0>
##
## [[2]]
## function (a)
## a + i
## <environment: 0x600da1ab0>
##
## [[3]]
## function (a)
## a + i
## <environment: 0x600da23f8>
sapply(fl,function(f) environment(f)$i);
## [1] 1 2 3
sapply(fl,function(f) f(3));
## [1] 4 5 6

In the above code I also demonstrate the proper way to closure around a loop variable. This requires creating a temporary function evaluation environment to hold a copy of i, and the returned function will then closure around that evaluation environment so that it can access the iteration-specific i. This holds true for other languages that support dynamic functions and closures, such as JavaScript. In R there is an additional requirement of forcing the promise to be resolved via force(), otherwise, for each generated function independently, the promise wouldn't be resolved until the first evaluation of that particular generated function, which would at that time lock in the current value of the promise target (the global i variable in this case) for that particular generated function. It should also be mentioned that this is an extremely wasteful design, to generate a temporary function for every iteration and evaluate it, which generates a new evaluation environment with a copy of the loop variable.

If you wanted to use this design then your code would become:

coc_glm_f <- list();
for (i in 1:nrow(coc_comp_model)) {
    coc_glm_f[[i]] <- (function(i) { force(i); function(x) x*coc_comp_model$Gradient[i] + coc_comp_model$`Y-Intercept`[i]; })(i);
};

However, it probably doesn't make sense to create a separate function for every row of the data.frame. If you intended the x parameter to take a scalar value (by which I mean a one-element vector), then you can define the function as follows:

coc_glm_f <- function(x) x*coc_comp_model$Gradient + coc_comp_model$`Y-Intercept`;

This function is vectorized, meaning you can pass a vector for x, where each element of x would correspond to a row of coc_comp_model. For example:

coc_comp_model <- data.frame(Relationship=c('DG-r ~ DG-cl','CA3-r ~ CA3-cl','CA2-r ~ CA2-cl'),Output=c('DG-r','CA3-r','CA2-r'),Input=c('DG-cl','CA3-cl','CA2-cl'),`|r-Value|`=c(0.8271167,0.7461309,0.9732584),`Y-Intercept`=c(0.0027217513,0.0350767684,-0.0040992226),Gradient=c(12.9901380,27.6107963,35.8299582),check.names=F);
coc_glm_f(seq_len(nrow(coc_comp_model)));
## [1]  12.99286  55.25667 107.48578

Comments

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.