You just need to perform the operation on the first dimension of your tensors, which is labeled by 0:
c = tensordot(a, b, axes=(0,0))
This will work as you wish. Also you don't need a list of axes, because it's just along one dimension you're performing the operation. With axes([1,2],[2,1]) you're cross multiplying the 2nd and 3rd dimensions. If you write it in index notation (Einstein summing convention) this corresponds to c[i,j] = a[i,k,l]*b[j,k,l], thus you're contracting the indices you want to keep.
EDIT: Ok, the problem is that the tensor product of a two 3d object is a 6d object. Since contractions involve pairs of indices, there's no way you'll get a 3d object by a tensordot operation. The trick is to split your calculation in two: first you do the tensordot on the index to do the matrix operation and then you take a tensor diagonal in order to reduce your 4d object to 3d. In one command:
d = np.diagonal(np.tensordot(a,b,axes=()), axis1=0, axis2=2)
In tensor notation d[i,j,k] = c[i,j,i,k] = a[i,j,l]*b[i,l,k].