programming with pyspark on a Spark cluster, the data is large and in pieces so can not be loaded into the memory or check the sanity of the data easily
basically it looks like
af.b Current%20events 1 996
af.b Kategorie:Musiek 1 4468
af.b Spesiaal:RecentChangesLinked/Gebruikerbespreking:Freakazoid 1 5209
af.b Spesiaal:RecentChangesLinked/Sir_Arthur_Conan_Doyle 1 5214
wikipedia data:
I read it from aws S3 and then try to construct spark Dataframe with the following python code in pyspark intepreter:
parts = data.map(lambda l: l.split())
wikis = parts.map(lambda p: (p[0], p[1],p[2],p[3]))
fields = [StructField("project", StringType(), True),
StructField("title", StringType(), True),
StructField("count", IntegerType(), True),
StructField("byte_size", StringType(), True)]
schema = StructType(fields)
df = sqlContext.createDataFrame(wikis, schema)
all look fine, only createDataFrame gives me error
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/usr/lib/spark/python/pyspark/sql/context.py", line 404, in createDataFrame
rdd, schema = self._createFromRDD(data, schema, samplingRatio)
File "/usr/lib/spark/python/pyspark/sql/context.py", line 298, in _createFromRDD
_verify_type(row, schema)
File "/usr/lib/spark/python/pyspark/sql/types.py", line 1152, in _verify_type
_verify_type(v, f.dataType)
File "/usr/lib/spark/python/pyspark/sql/types.py", line 1136, in _verify_type
raise TypeError("%s can not accept object in type %s" % (dataType, type(obj)))
TypeError: IntegerType can not accept object in type <type 'unicode'>
why I can not set the third column which should be count to IntegerType ? How can I solve this ?