8

I have a lower triangular array, like B:

B = np.array([[1,0,0,0],[.25,.75,0,0], [.1,.2,.7,0],[.2,.3,.4,.1]])

>>> B
array([[ 1.  ,  0.  ,  0.  ,  0.  ],
       [ 0.25,  0.75,  0.  ,  0.  ],
       [ 0.1 ,  0.2 ,  0.7 ,  0.  ],
       [ 0.2 ,  0.3 ,  0.4 ,  0.1 ]])

I want to flip it to look like:

array([[ 1.  ,  0.  ,  0.  ,  0.  ],
       [ 0.75,  0.25,  0.  ,  0.  ],
       [ 0.7 ,  0.2 ,  0.1 ,  0.  ],
       [ 0.1 ,  0.4 ,  0.3 ,  0.2 ]])

That is, I want to take all the positive values, and reverse within the positive values, leaving the trailing zeros in place. This is not what fliplr does:

>>> np.fliplr(B)
array([[ 0.  ,  0.  ,  0.  ,  1.  ],
       [ 0.  ,  0.  ,  0.75,  0.25],
       [ 0.  ,  0.7 ,  0.2 ,  0.1 ],
       [ 0.1 ,  0.4 ,  0.3 ,  0.2 ]])

Any tips? Also, the actual array I am working with would be something like B.shape = (200,20,4,4) instead of (4,4). Each (4,4) block looks like the above example (with different numbers across the 200, 20 different entries).

2 Answers 2

8

How about this:

# row, column indices of the lower triangle of B
r, c = np.tril_indices_from(B)

# flip the column indices by subtracting them from r, which is equal to the number
# of nonzero elements in each row minus one
B[r, c] = B[r, r - c]

print(repr(B))
# array([[ 1.  ,  0.  ,  0.  ,  0.  ],
#        [ 0.75,  0.25,  0.  ,  0.  ],
#        [ 0.7 ,  0.2 ,  0.1 ,  0.  ],
#        [ 0.1 ,  0.4 ,  0.3 ,  0.2 ]])

The same approach will generalize to any arbitrary N-dimensional array that consists of multiple lower triangular submatrices:

# creates a (200, 20, 4, 4) array consisting of tiled copies of B
B2 = np.tile(B[None, None, ...], (200, 20, 1, 1))

print(repr(B2[100, 10]))
# array([[ 1.  ,  0.  ,  0.  ,  0.  ],
#        [ 0.25,  0.75,  0.  ,  0.  ],
#        [ 0.1 ,  0.2 ,  0.7 ,  0.  ],
#        [ 0.2 ,  0.3 ,  0.4 ,  0.1 ]])

r, c = np.tril_indices_from(B2[0, 0])
B2[:, :, r, c] = B2[:, :, r, r - c]

print(repr(B2[100, 10]))
# array([[ 1.  ,  0.  ,  0.  ,  0.  ],
#        [ 0.75,  0.25,  0.  ,  0.  ],
#        [ 0.7 ,  0.2 ,  0.1 ,  0.  ],
#        [ 0.1 ,  0.4 ,  0.3 ,  0.2 ]])

For an upper triangular matrix you could simply subtract r from c instead, e.g.:

r, c = np.triu_indices_from(B.T)
B.T[r, c] = B.T[c - r, c]
Sign up to request clarification or add additional context in comments.

Comments

4

Here's one approach for a 2D array case -

mask = np.tril(np.ones((4,4),dtype=bool))
out = np.zeros_like(B)
out[mask] = B[:,::-1][mask[:,::-1]]

You can extend it to a 3D array case using the same 2D mask by masking the last two axes with it, like so -

out = np.zeros_like(B)
out[:,mask] = B[:,:,::-1][:,mask[:,::-1]]

.. and similarly for a 4D array case, like so -

out = np.zeros_like(B)
out[:,:,mask] = B[:,:,:,::-1][:,:,mask[:,::-1]]

As one can see, we are keeping the masking process to the last two axes of (4,4) and the solution basically stays the same.

Sample run -

In [95]: B
Out[95]: 
array([[ 1.  ,  0.  ,  0.  ,  0.  ],
       [ 0.25,  0.75,  0.  ,  0.  ],
       [ 0.1 ,  0.2 ,  0.7 ,  0.  ],
       [ 0.2 ,  0.3 ,  0.4 ,  0.1 ]])

In [96]: mask = np.tril(np.ones((4,4),dtype=bool))
    ...: out = np.zeros_like(B)
    ...: out[mask] = B[:,::-1][mask[:,::-1]]
    ...: 

In [97]: out
Out[97]: 
array([[ 1.  ,  0.  ,  0.  ,  0.  ],
       [ 0.75,  0.25,  0.  ,  0.  ],
       [ 0.7 ,  0.2 ,  0.1 ,  0.  ],
       [ 0.1 ,  0.4 ,  0.3 ,  0.2 ]])

Comments

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.