--Returns last N elements in list
lastN :: Int -> [a] -> [a]
lastN n xs = let m = length xs in drop (m-n) xs
--create contiguous array starting from index b within list a
produceContiguous :: [a] -> Int -> [[a]]
produceContiguous [] _ = [[]]
produceContiguous arr ix = scanl (\acc x -> acc ++ [x]) [arr !! ix] inset
where inset = lastN (length arr - (ix + 1)) arr
--Find maximum sum of all possible contiguous sub arrays, modulo [n]
--d is dummy data
let d = [1,2,3,10,6,3,1,47,10]
let maxResult = maximum $ map (\s -> maximum s) $ map (\c -> map (\ac -> (sum ac )`mod` (last n)) c ) $ map (\n -> produceContiguous d n ) [0..(length d) -1]
I'm a Haskell newb - just a few days into it .. If I'm doing something obviously wrong, whoopsies
nbit is designed to break the standard (efficient) solution. I'm not sure if there's any similarly efficient solution to this variant, but I doubt it. Modular arithmetic and maximization don't really mesh very well in general.d, but it's lost in the noise.