I'm loading a Pandas dataframe which has many data types (loaded from Excel). Two particular columns should be floats, but occasionally a researcher entered in a random comment like "not measured." I need to drop any rows where any values in one of two columns is not a number and preserve non-numeric data in other columns. A simple use case looks like this (the real table has several thousand rows...)
import pandas as pd
df = pd.DataFrame(dict(A = pd.Series([1,2,3,4,5]), B = pd.Series([96,33,45,'',8]), C = pd.Series([12,'Not measured',15,66,42]), D = pd.Series(['apples', 'oranges', 'peaches', 'plums', 'pears'])))
Which results in this data table:
A B C D
0 1 96 12 apples
1 2 33 Not measured oranges
2 3 45 15 peaches
3 4 66 plums
4 5 8 42 pears
I'm not clear how to get to this table:
A B C D
0 1 96 12 apples
2 3 45 15 peaches
4 5 8 42 pears
I tried dropna, but the types are "object" since there are non-numeric entries. I can't convert the values to floats without either converting the whole table, or doing one series at a time which loses the relationship to the other data in the row. Perhaps there is something simple I'm not understanding?