I love numpy because multi cores are automatically used on vector operation.
But, I recently noticed that only 4 cores are used although my machine has 8 cores.
Why doesn't numpy use all cores in the machine? Is it possible to let numpy use more cores on numpy's vector operation?
I'm using Mac OSX 10.8.
Update
np.show_config() shows below:
lapack_opt_info:
libraries = ['mkl_lapack95_lp64', 'mkl_intel_lp64', 'mkl_intel_thread', 'mkl_core', 'iomp5', 'pthread']
library_dirs = ['/Users/john/.pyenv/versions/anaconda-2.0.1/lib']
define_macros = [('SCIPY_MKL_H', None), ('HAVE_CBLAS', None)]
include_dirs = ['/Users/john/.pyenv/versions/anaconda-2.0.1/include']
blas_opt_info:
libraries = ['mkl_intel_lp64', 'mkl_intel_thread', 'mkl_core', 'iomp5', 'pthread']
library_dirs = ['/Users/john/.pyenv/versions/anaconda-2.0.1/lib']
define_macros = [('SCIPY_MKL_H', None), ('HAVE_CBLAS', None)]
include_dirs = ['/Users/john/.pyenv/versions/anaconda-2.0.1/include']
openblas_lapack_info:
NOT AVAILABLE
lapack_mkl_info:
libraries = ['mkl_lapack95_lp64', 'mkl_intel_lp64', 'mkl_intel_thread', 'mkl_core', 'iomp5', 'pthread']
library_dirs = ['/Users/john/.pyenv/versions/anaconda-2.0.1/lib']
define_macros = [('SCIPY_MKL_H', None), ('HAVE_CBLAS', None)]
include_dirs = ['/Users/john/.pyenv/versions/anaconda-2.0.1/include']
blas_mkl_info:
libraries = ['mkl_intel_lp64', 'mkl_intel_thread', 'mkl_core', 'iomp5', 'pthread']
library_dirs = ['/Users/john/.pyenv/versions/anaconda-2.0.1/lib']
define_macros = [('SCIPY_MKL_H', None), ('HAVE_CBLAS', None)]
include_dirs = ['/Users/john/.pyenv/versions/anaconda-2.0.1/include']
mkl_info:
libraries = ['mkl_intel_lp64', 'mkl_intel_thread', 'mkl_core', 'iomp5', 'pthread']
library_dirs = ['/Users/john/.pyenv/versions/anaconda-2.0.1/lib']
define_macros = [('SCIPY_MKL_H', None), ('HAVE_CBLAS', None)]
include_dirs = ['/Users/john/.pyenv/versions/anaconda-2.0.1/include']

numpy.show_config()?