I have a Pandas dataframe called pdf that is simply four columns of float64s. Here are the first five lines:
pdf[:5]
x1 x2 x3 y
0 9.082060 12.837502 6.484107 10.985202
1 9.715981 14.870818 8.026042 12.815644
2 11.303901 21.286343 7.787188 15.786915
3 9.910293 20.533151 6.991775 14.775010
4 12.394907 15.401446 7.101058 13.213897
And the dtypes:
pdf.dtypes
x1 float64
x2 float64
x3 float64
y float64
dtype: object
But when I try to convert this into a Spark dataframe:
sdf = sqlContext.createDataFrame(pdf)
TypeErrorTraceback (most recent call last)
<ipython-input-54-a40cb79104b5> in <module>()
5 ])
6
----> 7 sdf = sqlContext.createDataFrame(pdf)
/usr/lib/spark/python/pyspark/sql/context.py in createDataFrame(self, data, schema, samplingRatio)
423 rdd, schema = self._createFromRDD(data, schema, samplingRatio)
424 else:
--> 425 rdd, schema = self._createFromLocal(data, schema)
426 jrdd = self._jvm.SerDeUtil.toJavaArray(rdd._to_java_object_rdd())
427 jdf = self._ssql_ctx.applySchemaToPythonRDD(jrdd.rdd(), schema.json())
/usr/lib/spark/python/pyspark/sql/context.py in _createFromLocal(self, data, schema)
339
340 if schema is None or isinstance(schema, (list, tuple)):
--> 341 struct = self._inferSchemaFromList(data)
342 if isinstance(schema, (list, tuple)):
343 for i, name in enumerate(schema):
/usr/lib/spark/python/pyspark/sql/context.py in _inferSchemaFromList(self, data)
239 warnings.warn("inferring schema from dict is deprecated,"
240 "please use pyspark.sql.Row instead")
--> 241 schema = reduce(_merge_type, map(_infer_schema, data))
242 if _has_nulltype(schema):
243 raise ValueError("Some of types cannot be determined after inferring")
/usr/lib/spark/python/pyspark/sql/types.py in _infer_schema(row)
829
830 else:
--> 831 raise TypeError("Can not infer schema for type: %s" % type(row))
832
833 fields = [StructField(k, _infer_type(v), True) for k, v in items]
TypeError: Can not infer schema for type: <type 'str'>
If I try to specify a schema:
schema = StructType([StructField('y', DoubleType()),
StructField('x1', DoubleType()),
StructField('x2', DoubleType()),
StructField('x3', DoubleType())
])
sdf = sqlContext.createDataFrame(pdf, schema)
Then we get a slightly different error:
TypeErrorTraceback (most recent call last)
<ipython-input-55-a7d2b6d09ed3> in <module>()
5 ])
6
----> 7 sdf = sqlContext.createDataFrame(pdf, schema)
/usr/lib/spark/python/pyspark/sql/context.py in createDataFrame(self, data, schema, samplingRatio)
423 rdd, schema = self._createFromRDD(data, schema, samplingRatio)
424 else:
--> 425 rdd, schema = self._createFromLocal(data, schema)
426 jrdd = self._jvm.SerDeUtil.toJavaArray(rdd._to_java_object_rdd())
427 jdf = self._ssql_ctx.applySchemaToPythonRDD(jrdd.rdd(), schema.json())
/usr/lib/spark/python/pyspark/sql/context.py in _createFromLocal(self, data, schema)
348 elif isinstance(schema, StructType):
349 for row in data:
--> 350 _verify_type(row, schema)
351
352 else:
/usr/lib/spark/python/pyspark/sql/types.py in _verify_type(obj, dataType)
1132 if _type is StructType:
1133 if not isinstance(obj, (tuple, list)):
-> 1134 raise TypeError("StructType can not accept object %r in type %s" % (obj, type(obj)))
1135 else:
1136 # subclass of them can not be fromInternald in JVM
TypeError: StructType can not accept object 'x1' in type <type 'str'>
Am I missing something obvious? Has anyone had success building a spark dataframe from a Pandas dataframe? This is on Python 2.7, Spark v1.6.1, and Pandas v0.18.1.
TypeError: Can not infer schema for type: <type 'numpy.int64'>. But I don't think a Pandas dataframe can have no headers at all, can it?python 2.7.10,spark 1.6.0andpandas 0.16.2.