I'm trying to use SQLContext.subtract() in Spark 1.6.1 to remove rows from a dataframe based on a column from another dataframe. Let's use an example:
from pyspark.sql import Row
df1 = sqlContext.createDataFrame([
Row(name='Alice', age=2),
Row(name='Bob', age=1),
]).alias('df1')
df2 = sqlContext.createDataFrame([
Row(name='Bob'),
])
df1_with_df2 = df1.join(df2, 'name').select('df1.*')
df1_without_df2 = df1.subtract(df1_with_df2)
Since I want all rows from df1 which don't include name='Bob' I expect Row(age=2, name='Alice'). But I also retrieve Bob:
print(df1_without_df2.collect())
# [Row(age='1', name='Bob'), Row(age='2', name='Alice')]
After various experiments to get down to this MCVE, I found out that the issue is with the age key. If I omit it:
df1_noage = sqlContext.createDataFrame([
Row(name='Alice'),
Row(name='Bob'),
]).alias('df1_noage')
df1_noage_with_df2 = df1_noage.join(df2, 'name').select('df1_noage.*')
df1_noage_without_df2 = df1_noage.subtract(df1_noage_with_df2)
print(df1_noage_without_df2.collect())
# [Row(name='Alice')]
Then I only get Alice as expected. The weirdest observation I made is that it's possible to add keys, as long as they're after (in the lexicographical order sense) the key I use in the join:
df1_zage = sqlContext.createDataFrame([
Row(zage=2, name='Alice'),
Row(zage=1, name='Bob'),
]).alias('df1_zage')
df1_zage_with_df2 = df1_zage.join(df2, 'name').select('df1_zage.*')
df1_zage_without_df2 = df1_zage.subtract(df1_zage_with_df2)
print(df1_zage_without_df2.collect())
# [Row(name='Alice', zage=2)]
I correctly get Alice (with her zage)! In my real examples, I'm interested in all columns, not only the ones that are after name.