df <- data.frame(A = c(1, 2, 3, 4, 5, 6), B = c(1, 0, 1, 0, 0, 1), C = c("Mr.","Mr.","Mrs.","Miss","Mr.","Mrs."))
for(i in 1:ncol(df)){
assign(paste("df_",i,sep=""), unique(df[,i]))
}
require(rowr)
df <- cbind.fill(df_1,df_2,df_3, fill = NA)
V1 V1 V1
1 1 1 Mr.
2 2 0 Mrs.
3 3 NA Miss
4 4 NA <NA>
5 5 NA <NA>
6 6 NA <NA>
or you could do
require(rowr)
df <- cbind.fill(df_1,df_2,df_3, fill = "")
df
V1 V1 V1
1 1 1 Mr.
2 2 0 Mrs.
3 3 Miss
4 4
5 5
6 6
If you want to avoid typing the name of each intermediate dataframe you can just use ls(pattern="df_") and get the objects named in that vector or use another loop.
If you want to change the column names back to their original values you can use:
colnames(output_df) <- colnames(input_df)
Then you can save the results however you, like, i.e.
saveRDS()
save()
or write it to a file.
Putting it all together:
df <- data.frame(A = c(1, 2, 3, 4, 5, 6), B = c(1, 0, 1, 0, 0, 1), C = c("Mr.","Mr.","Mrs.","Miss","Mr.","Mrs."))
for(i in 1:ncol(df)){
assign(paste("df_",i,sep=""), unique(df[,i]))
}
require(rowr)
files <- ls(pattern="df_")
df_output <- data.frame()
for(i in files){
df_output <- cbind.fill(df_output, get(i), fill = "")
}
df_output <- df_output[,2:4] # fix extra colname from initialization
colnames(df_output) <- colnames(df)
write.csv(df_output, "df_out.csv",row.names = F)
verify_it_worked <- read.csv("df_out.csv")
verify_it_worked
A B C
1 1 1 Mr.
2 2 0 Mrs.
3 3 Miss
4 4
5 5
6 6