Formally the struct may have padding so that its size is greater than 1.
I.e., formally you can't reinterpret_cast and have fully portable code, except for ¹an array of only one item.
But for the in-practice, some years ago someone asked if there was now any compiler that by default would give sizeof(T) > 1 for struct T{ char x; };. I have yet to see any example. So in practice one can just static_assert that the size is 1, and not worry at all that this static_assert will fail on some system.
I.e.,
S const a1[] = { {'a'}, {'4'}, {'2'}, {'\0'} };
static_assert( sizeof( S ) == 1, "!" );
char const* const a2 = reinterpret_cast<char const*>( a1 );
for( int i = 0; i < 4; ++i )
{
assert( a1[i].v == a2[i] );
}
Since it's possible to interpret the C++14 and later standards in a way where the indexing has Undefined Behavior, based on a peculiar interpretation of "array" as referring to some original array, one might instead write this code in a more awkward and verbose but guaranteed valid way:
// I do not recommend this, but it's one way to avoid problems with some compiler that's
// based on an unreasonable, impractical interpretation of the C++14 standard.
#include <assert.h>
#include <new>
auto main() -> int
{
struct S
{
char v;
};
int const compiler_specific_overhead = 0; // Redefine per compiler.
// With value 0 for the overhead the internal workings here, what happens
// in the machine code, is the same as /without/ this verbose work-around
// for one impractical interpretation of the standard.
int const n = 4;
static_assert( sizeof( S ) == 1, "!" );
char storage[n + compiler_specific_overhead];
S* const a1 = ::new( storage ) S[n];
assert( (void*)a1 == storage + compiler_specific_overhead );
for( int i = 0; i < n; ++i ) { a1[i].v = "a42"[i]; } // Whatever
// Here a2 points to items of the original `char` array, hence no indexing
// UB even with impractical interpretation of the C++14 standard.
// Note that the indexing-UB-free code from this point, is exactly the same
// source code as the first code example that some claim has indexing UB.
char const* const a2 = reinterpret_cast<char const*>( a1 );
for( int i = 0; i < n; ++i )
{
assert( a1[i].v == a2[i] );
}
}
Notes:
¹ The standard guarantees that there's no padding at the start of the struct.
structcontaining acharis required to have no special alignment.