The nice thing about promises is that they make a simple analogy between synchronous code and asynchronous code. To illustrate (using the Q library):
Synchronous:
var thisReturnsAValue = function() {
var result = mySynchronousFunction();
if(result) {
return getOneValue();
} else {
return getAnotherValue();
}
};
try {
var value = thisReturnsAValue();
console.log(value);
} catch(err) {
console.error(err);
}
Asynchronous:
var Q = require('q');
var thisReturnsAPromiseForAValue = function() {
return Q.Promise(function() {
return myAsynchronousFunction().then(function(result) {
if(result) {
// Even getOneValue() would work here, because a non-promise
// value is automatically cast to a pre-resolved promise
return getOneValueAsynchronously();
} else {
return getAnotherValueAsynchronously();
}
});
});
};
thisReturnsAPromiseForAValue().then(function(value) {
console.log(value);
}, function(err) {
console.error(err);
});
You just need to get used to the idea that return values are always accessed as arguments to then-callbacks, and that chaining promises equates to composing function calls (f(g(h(x)))) or otherwise executing functions in sequence (var x2 = h(x); var x3 = g(x2);). That's essentially it! Things get a little tricky when you introduce branches, but you can figure out what to do from these first principles. Because then-callbacks accept promises as return values, you can mutate a value you got asynchronously by returning another promise for an asynchronous operation which resolves to a new value based on the old one, and the parent promise will not resolve until the new one resolves! And, of course, you can return these promises from within if-else branches.
The other really nice thing illustrated in the example above is that promises (at least ones that are compliant with Promises/A+) handle exceptions in an equally analogous way. The first error "raised" bypasses the non-error callbacks and bubbles up to the first available error callback, much like a try-catch block.
For what it's worth, I think trying to mimic this behavior using hand-crafted Node.js-style callbacks and the async library is its own special kind of hell :).
Following these guidelines your code would become (assuming all functions are async and return promises):
beginTransaction().then(function() {
// beginTransaction() has run
return updateUsers(); // resolves the boolean value `updated`
}).then(function(updated) {
// updateUsers() has "returned" `updated`
if(updated) {
if(isBusiness) {
return updateBusiness().then(function(updated) {
if(!updated) {
return insertBusiness();
}
// It's okay if we don't return anything -- it will
// result in a promise which immediately resolves to
// `undefined`, which is a no-op, just like a missing
// else-branch
});
} else {
return deleteBusiness();
}
} else {
if(upsert) {
return insertUser().then(function() {
if(isBusiness) {
return insertBusiness();
}
});
}
}
}).then(function() {
return commitTransaction();
}).done(function() {
console.log('all done!');
}, function(err) {
console.error(err);
});
if is_busines { *...* } else { *delete business* }. Why are you deleting business if its not a business. Likewise,*update business* if not updated *insert business*. You should either update a business or insert one.Promise.coroutine()method with standard ES6 promises / generators and handle your async workflow in a generator function as if it is synchronous. If i can find some time later today I will try to give an example.Promise.coroutineor thecolibrary available.