I'm trying to get the Seaborn kdeplot example to work on my dataset. For some reason, one of my datasets isn't plotting at all, but the other seems to be plotting fine. To get a minimal working example, I have sampled only 10 rows from my very large data sets.
My input data looks like this:
#Dataframe dfA
index x y category
0 595700 5 1.000000 14.0
1 293559 4 1.000000 14.0
2 562295 3 0.000000 14.0
3 219426 4 1.000000 14.0
4 592731 2 1.000000 14.0
5 178573 3 1.000000 14.0
6 553156 4 0.500000 14.0
7 385031 1 1.000000 14.0
8 391681 3 0.999998 14.0
9 492771 2 1.000000 14.0
# Dataframe dfB
index x y category
0 56345 3 1.000000 6.0
1 383741 4 1.000000 6.0
2 103044 2 1.000000 6.0
3 297357 5 1.000000 6.0
4 257508 3 1.000000 6.0
5 223600 2 0.999938 6.0
6 44530 2 1.000000 6.0
7 82925 3 1.000000 6.0
8 169592 3 0.500000 6.0
9 229482 4 0.285714 6.0
My code snippet looks like this:
import seaborn as sns
import matplotlib.pyplot as plt
sns.set(style="darkgrid")
# Set up the figure
f, ax = plt.subplots(figsize=(8, 8))
# Draw the two density plots
ax = sns.kdeplot(dfA.x, dfA.y,
cmap="Reds", shade=True, shade_lowest=False)
ax = sns.kdeplot(dfB.x, dfB.y,
cmap="Blues", shade=True, shade_lowest=False)
Why isn't the data from dataframe dfA actually plotting?
f, axarr = plt.subplots(2)+sns.kdeplot(dfA.x, dfA.y, cmap="Reds", shade=True, shade_lowest=False, ax=axarr[0])+sns.kdeplot(dfB.x, dfB.y, cmap="Blues", shade=True, shade_lowest=False, ax=axarr[1])