When df['X'] contains a mix of numbers and strings, the dtype of the column will be object instead of a numeric dtype. The number-like items in df['X'] may be ints or floats or maybe even strings (it's unclear from your question).
Many numeric operations such as df['X'] > 15000 may raise errors in this case.
To treat the number-like values as numbers, use pd.to_numeric to convert the column into a numeric dtype:
In [41]: numeric_X = pd.to_numeric(df['X'], errors='coerce')
In [43]: numeric_X
Out[43]:
0 13500.0
1 13600.0
2 NaN
3 NaN
4 15003.0
5 15004.0
Name: X, dtype: float64
And you can also identify the string-like values by testing for NaNs:
is_stringlike = np.isnan(numeric_X)
import numpy as np
import pandas as pd
df = pd.DataFrame({'X': ['13500', '13600', 'BBOX-001', 'Mobi-1', '15003', '15004']})
numeric_X = pd.to_numeric(df['X'], errors='coerce')
is_stringlike = np.isnan(numeric_X)
conditions = [numeric_X > 15000, is_stringlike]
choices = ['A', df['X']]
df['Y'] = (np.select(conditions, choices, default='B'))
print(df)
yields
X Y
0 13500 B
1 13600 B
2 BBOX-001 BBOX-001
3 Mobi-1 Mobi-1
4 15003 A
5 15004 A