I have a pandas dataframe of variable number of columns. I'd like to numerically integrate each column of the dataframe so that I can evaluate the definite integral from row 0 to row 'n'. I have a function that works on an 1D array, but is there a better way to do this in a pandas dataframe so that I don't have to iterate over columns and cells? I was thinking of some way of using applymap, but I can't see how to make it work.
This is the function that works on a 1D array:
def findB(x,y):
y_int = np.zeros(y.size)
y_int_min = np.zeros(y.size)
y_int_max = np.zeros(y.size)
end = y.size-1
y_int[0]=(y[1]+y[0])/2*(x[1]-x[0])
for i in range(1,end,1):
j=i+1
y_int[i] = (y[j]+y[i])/2*(x[j]-x[i]) + y_int[i-1]
return y_int
I'd like to replace it with something that calculates multiple columns of a dataframe all at once, something like this:
B_df = y_df.applymap(integrator)
EDIT:
Starting dataframe dB_df:
Sample1 1 dB Sample1 2 dB Sample1 3 dB Sample1 4 dB Sample1 5 dB Sample1 6 dB
0 2.472389 6.524537 0.306852 -6.209527 -6.531123 -4.901795
1 6.982619 -0.534953 -7.537024 8.301643 7.744730 7.962163
2 -8.038405 -8.888681 6.856490 -0.052084 0.018511 -4.117407
3 0.040788 5.622489 3.522841 -8.170495 -7.707704 -6.313693
4 8.512173 1.896649 -8.831261 6.889746 6.960343 8.236696
5 -6.234313 -9.908385 4.934738 1.595130 3.116842 -2.078000
6 -1.998620 3.818398 5.444592 -7.503763 -8.727408 -8.117782
7 7.884663 3.818398 -8.046873 6.223019 4.646397 6.667921
8 -5.332267 -9.163214 1.993285 2.144201 4.646397 0.000627
9 -2.783008 2.288842 5.836786 -8.013618 -7.825365 -8.470759
Ending dataframe B_df:
Sample1 1 B Sample1 2 B Sample1 3 B Sample1 4 B Sample1 5 B Sample1 6 B
0 0.000038 0.000024 -0.000029 0.000008 0.000005 0.000012
1 0.000034 -0.000014 -0.000032 0.000041 0.000036 0.000028
2 0.000002 -0.000027 0.000010 0.000008 0.000005 -0.000014
3 0.000036 0.000003 -0.000011 0.000003 0.000002 -0.000006
4 0.000045 -0.000029 -0.000027 0.000037 0.000042 0.000018
5 0.000012 -0.000053 0.000015 0.000014 0.000020 -0.000023
6 0.000036 -0.000023 0.000004 0.000009 0.000004 -0.000028
7 0.000046 -0.000044 -0.000020 0.000042 0.000041 -0.000002
8 0.000013 -0.000071 0.000011 0.000019 0.000028 -0.000036
9 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
In the above example,
(x[j]-x[i]) = 0.000008

applyprobably, but this really won't be any more efficient than a loop over the columns.xcoming from? Is it aSeries, a numpyndarray, or something else?x? That is much more important than the numerical value.