22

I have the following pandas data frame:

import pandas as pd
import numpy as np
df = pd.DataFrame({
               'fc': [100,100,112,1.3,14,125],
               'sample_id': ['S1','S1','S1','S2','S2','S2'],
               'gene_symbol': ['a', 'b', 'c', 'a', 'b', 'c'],
               })

df = df[['gene_symbol', 'sample_id', 'fc']]
df

Which produces this:

Out[11]:
  gene_symbol sample_id     fc
0           a        S1  100.0
1           b        S1  100.0
2           c        S1  112.0
3           a        S2    1.3
4           b        S2   14.0
5           c        S2  125.0

How can I spread sample_id so that in the end I get this:

gene_symbol    S1   S2
a             100   1.3
b             100   14.0
c             112   125.0

2 Answers 2

27

Use pivot or unstack:

#df = df[['gene_symbol', 'sample_id', 'fc']]
df = df.pivot(index='gene_symbol',columns='sample_id',values='fc')
print (df)
sample_id       S1     S2
gene_symbol              
a            100.0    1.3
b            100.0   14.0
c            112.0  125.0

df = df.set_index(['gene_symbol','sample_id'])['fc'].unstack(fill_value=0)
print (df)
sample_id       S1     S2
gene_symbol              
a            100.0    1.3
b            100.0   14.0
c            112.0  125.0

But if duplicates, need pivot_table or aggregate with groupby or , mean can be changed to sum, median, ...:

df = pd.DataFrame({
               'fc': [100,100,112,1.3,14,125, 100],
               'sample_id': ['S1','S1','S1','S2','S2','S2', 'S2'],
               'gene_symbol': ['a', 'b', 'c', 'a', 'b', 'c', 'c'],
               })
print (df)
      fc gene_symbol sample_id
0  100.0           a        S1
1  100.0           b        S1
2  112.0           c        S1
3    1.3           a        S2
4   14.0           b        S2
5  125.0           c        S2 <- same c, S2, different fc
6  100.0           c        S2 <- same c, S2, different fc
df = df.pivot(index='gene_symbol',columns='sample_id',values='fc')

ValueError: Index contains duplicate entries, cannot reshape

df = df.pivot_table(index='gene_symbol',columns='sample_id',values='fc', aggfunc='mean')
print (df)
sample_id       S1     S2
gene_symbol              
a            100.0    1.3
b            100.0   14.0
c            112.0  112.5

df = df.groupby(['gene_symbol','sample_id'])['fc'].mean().unstack(fill_value=0)
print (df)
sample_id       S1     S2
gene_symbol              
a            100.0    1.3
b            100.0   14.0
c            112.0  112.5

EDIT:

For cleaning set columns name to None and reset_index:

df.columns.name = None
df = df.reset_index()
print (df)
  gene_symbol     S1     S2
0           a  100.0    1.3
1           b  100.0   14.0
2           c  112.0  112.5
Sign up to request clarification or add additional context in comments.

4 Comments

Thanks a million. How can I flatten the index. So I get exactly the result as in OP?
Give me as sec.
Do you need gene_symbol as index or as column?
as column. And don't want sample_id index to appear.
3

you can also use pd.crosstab() method:

In [82]: pd.crosstab(index=df.gene_symbol, columns=df.sample_id, 
                     values=df.fc, aggfunc='mean') \
    ...:   .rename_axis(None,1) \
    ...:   .reset_index()
    ...:
Out[82]:
  gene_symbol     S1     S2
0           a  100.0    1.3
1           b  100.0   14.0
2           c  112.0  125.0

Comments

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.