You have two issues:
- Converting a runtime value (your "type") into a compile time determined type (with associated behavior).
- "Unifying" the possible different types to a single (statically at compile time known) type.
Point 2 is what inheritance together with virtual member functions are for:
struct Thing {
virtual void doStuff() const = 0;
virtual ~Thing() {}
};
struct AThing : Thing {
void doStuff() const override { std::cout << "A"; }
};
struct BThing : Thing {
void doStuff() const override { std::cout << "B"; }
};
Point 1 is usually tackled by creating some kind of "factory" mechanism, and then dispatching based on the runtime value to one of those factories. First, the factories:
Thing * factoryA() { return new AThing(); }
Thing * factoryB() { return new BThing(); }
Thing * factory_failure() { throw 42; }
The "dispatching" (or "choosing the right factory") can be done in different ways, one of those being your switch statement (fast, but clumsy), linear search through some container/array (easy, slow) or by lookup in a map (logarithmic - or constant for hashing based maps).
I chose a (ordered) map, but instead of using std::map (or std::unordered_map) I use a (sorted!) std::array to avoid dynamic memory allocation:
// Our "map" is nothing more but an array of key value pairs.
template <
typename Key,
typename Value,
std::size_t Size>
using cmap = std::array<std::pair<Key,Value>, Size>;
// Long type names make code hard to read.
template <
typename First,
typename... Rest>
using cmap_from =
cmap<typename First::first_type,
typename First::second_type,
sizeof...(Rest) + 1u>;
// Helper function to avoid us having to specify the size
template <
typename First,
typename... Rest>
cmap_from<First, Rest...> make_cmap(First && first,
Rest && ... rest) {
return {std::forward<First>(first), std::forward<Rest>(rest)...};
}
Using std::lower_bound I perform a binary search on this sorted array (ehm "map"):
// Binary search for lower bound, check for equality
template <
typename Key,
typename Value,
std::size_t Size>
Value get_from(cmap<Key,Value,Size> const & map,
Key const & key,
Value alternative) {
assert(std::is_sorted(std::begin(map), std::end(map),
[](auto const & lhs, auto const & rhs) {
return lhs.first < rhs.first; }));
auto const lower = std::lower_bound(std::begin(map), std::end(map),
key,
[](auto const & pair, auto k) {
return pair.first < k; });
if (lower->first == key) {
return lower->second;
} else {
// could also throw or whatever other failure mode
return alternative;
}
}
So that, finally, I can use a static const map to get a factory given some runtime value "type" (or choice, as I named it):
int main() {
int const choices[] = {1, 10, 100};
static auto const map =
make_cmap(std::make_pair(1, factoryA),
std::make_pair(10, factoryB));
try {
for (int choice : choices) {
std::cout << "Processing choice " << choice << ": ";
auto const factory = get_from(map, choice, factory_failure);
Thing * thing = factory();
thing->doStuff();
std::cout << std::endl;
delete thing;
}
} catch (int const & value) {
std::cout << "Caught a " << value
<< " ... wow this is evil!" << std::endl;
}
}
(Live on ideone)
The initialization of that "map" could probably made constexpr.
Of course instead of raw pointers (Thing *) you should use managed pointers (like std::unique_ptr). Further, if you don't want to have your processing (doStuff) as member functions, then just make a single "dispatching" (virtual) member function that calls out to a given function object, passing the own instance (this). With a CRTP base class, you don't need to implement that member function for every one of your types.