According to Google Calculator (-13) % 64 is 51.
According to JavaScript, it is -13.
console.log(-13 % 64);
How do I fix this?
According to Google Calculator (-13) % 64 is 51.
According to JavaScript, it is -13.
console.log(-13 % 64);
How do I fix this?
Number.prototype.mod = function (n) {
"use strict";
return ((this % n) + n) % n;
};
Taken from this article: The JavaScript Modulo Bug
x < -n - e.g. (-7 + 5) % 5 === -2 but ((-7 % 5) + 5) % 5 == 3.Using Number.prototype is SLOW, because each time you use the prototype method your number is wrapped in an Object. Instead of this:
Number.prototype.mod = function(n) {
return ((this % n) + n) % n;
}
Use:
function mod(n, m) {
return ((n % m) + m) % m;
}
See: https://jsperf.app/negative-modulo/2
~97% faster than using prototype. If performance is of importance to you of course..
ns and ms around the wrong way in your second example @StuR . It should be return ((n % m) + m) % m;.The % operator in JavaScript is the remainder operator, not the modulo operator (the main difference being in how negative numbers are treated):
-1 % 8 // -1, not 7
remainder, it must be larger than 0 by definition. Can't you remember the division theorem from high school?! So maybe you can have a look here: en.wikipedia.org/wiki/Euclidean_divisionA "mod" function to return a positive result.
var mod = function (n, m) {
var remain = n % m;
return Math.floor(remain >= 0 ? remain : remain + m);
};
mod(5,22) // 5
mod(25,22) // 3
mod(-1,22) // 21
mod(-2,22) // 20
mod(0,22) // 0
mod(-1,22) // 21
mod(-21,22) // 1
And of course
mod(-13,64) // 51
#sec-applying-the-mod-operator right there in the url :) Anyway, thanks for the note, I took the fluff out of my answer, it's not really important anyway.remain * m >= 0 ? remain : remain + m otherwise it doesn't work for negative divisors. For example, mod(-3, -18) returned -21 instead of -3. Pretty rare occurence but it just happened to break for me, years later.The accepted answer makes me a little nervous because it re-uses the % operator. What if Javascript changes the behavior in the future?
Here is a workaround that does not re-use %:
function mod(a, n) {
return a - (n * Math.floor(a/n));
}
mod(1,64); // 1
mod(63,64); // 63
mod(64,64); // 0
mod(65,64); // 1
mod(0,64); // 0
mod(-1,64); // 63
mod(-13,64); // 51
mod(-63,64); // 1
mod(-64,64); // 0
mod(-65,64); // 63
-, *, /, ;, ., (, ), ,, Math.floor, function or return changes? Then your code is horribly broken.If x is an integer and n is a power of 2, you can use x & (n - 1) instead of x % n.
> -13 & (64 - 1)
51
n is already a positive power of 2, wouldn't (1 << 6) - 13 be simpler, since -13 & (64 - 1) is really -13 & ((1 << 6) - 1)Though it isn't behaving as you expected, it doesn't mean that JavaScript is not 'behaving'. It is a choice JavaScript made for its modulo calculation. Because, by definition either answer makes sense.
See this from Wikipedia. You can see on the right how different languages chose the result's sign.
This is not a bug, there's 3 functions to calculate modulo, you can use the one which fit your needs (I would recommend to use Euclidean function)
console.log( 41 % 7 ); // 6
console.log( -41 % 7 ); // -6
console.log( -41 % -7 ); // -6
console.log( 41 % -7 ); // 6
Number.prototype.mod = function(n) {
return ((this%n)+n)%n;
};
console.log( parseInt( 41).mod( 7) ); // 6
console.log( parseInt(-41).mod( 7) ); // 1
console.log( parseInt(-41).mod(-7) ); // -6
console.log( parseInt( 41).mod(-7) ); // -1
Number.prototype.mod = function(n) {
var m = ((this%n)+n)%n;
return m < 0 ? m + Math.abs(n) : m;
};
console.log( parseInt( 41).mod( 7) ); // 6
console.log( parseInt(-41).mod( 7) ); // 1
console.log( parseInt(-41).mod(-7) ); // 1
console.log( parseInt( 41).mod(-7) ); // 6
% can return negative results (an this is the purpose of these functions, to fix it)parseInt(-41).mod(-7) would return -6 instead of 1 (and this is exactly the purpose of the Integer part function I wrote)For fun, here's a "wrap" function that works sorta like a modulo, except you can also specify the minimum value of the range (instead of it being 0):
const wrap = (value = 0, min = 0, max = 10) =>
((((value - min) % (max - min)) + (max - min)) % (max - min)) + min;
Basically just takes the true modulo formula, offsets it such that min ends up at 0, then adds min back in after.
Useful if you have a value that you want to keep between two values.
V. Rubinetti : maybe also add some safeguard check in case user input for min and max happen to be the same (which would inadvertently trigger division by zero)I deal with négative a and negative n too
//best perf, hard to read
function modul3(a,n){
r = a/n | 0 ;
if(a < 0){
r += n < 0 ? 1 : -1
}
return a - n * r
}
// shorter code
function modul(a,n){
return a%n + (a < 0 && Math.abs(n));
}
//beetween perf and small code
function modul(a,n){
return a - n * Math[n > 0 ? 'floor' : 'ceil'](a/n);
}
There is a NPM package that will do the work for you. You can install it with the following command.
npm install just-modulo --save
Usage copied from the README
import modulo from 'just-modulo';
modulo(7, 5); // 2
modulo(17, 23); // 17
modulo(16.2, 3.8); // 17
modulo(5.8, 3.4); //2.4
modulo(4, 0); // 4
modulo(-7, 5); // 3
modulo(-2, 15); // 13
modulo(-5.8, 3.4); // 1
modulo(12, -1); // NaN
modulo(-3, -8); // NaN
modulo(12, 'apple'); // NaN
modulo('bee', 9); // NaN
modulo(null, undefined); // NaN
GitHub repository can be found via the following link:
https://github.com/angus-c/just/tree/master/packages/number-modulo
Assuming the language you're working with uses truncated division algorithm, this function will simultaneously return the modulo values for truncated division, floored division, and also Euclidean division (plus safe handling of division by zero).
The main advantage of this function is that only one single division is performed to obtain all 3 values, thus avoiding the double-work approach suggested by
Mozilla MDN:
((n % d) + d) % d
(Arguments are auto integer truncated, so a divisor of -0.31 has same effect as division by zero)
function triple_mod(___, __, _, ____) {
return sprintf("T:%+d_F:%+d_E:%+d", _ = (____ = (__ = int(__)) == (_ = \
!!__) || __ == -_ || (___ = int(___)) == __ || !___ ||
! (_ = ___ % __)) ? (__ ? _ < _ : (_ = log(_)) - _) : _,
___ = (____ || (!__ < __) - (___ < !__)) ? _ : _ + __,
(____ || !_ < _) ? _ : _ < +___ ? ___ : _ - __)
}
+9007199254738183 +61277761 T:+38898571_F:+38898571_E:+38898571
+9007199254738183 -61277761 T:+38898571_F:-22379190_E:+38898571
-9007199254738183 +61277761 T:-38898571_F:+22379190_E:+22379190
-9007199254738183 -61277761 T:-38898571_F:-38898571_E:+22379190
+4688888899996789 +131071 T:+80187_F:+80187_E:+80187
+4688888899996789 -131071 T:+80187_F:-50884_E:+80187
-4688888899996789 +131071 T:-80187_F:+50884_E:+50884
-4688888899996789 -131071 T:-80187_F:-80187_E:+50884
— The function has no declared types because it's truly polymorphic -
it accepts integers, floats, and even ASCII numeric strings.
— The function contains no hardcoded numbers at all since all the
necessary constants and thresholds are derived on the fly. Rapid handling logic exists for matching inputs, zero-dividend, divisor of ±1, and remainder-less exact division.
— All calls to abs(), ceil(), or floor() type functions have been eliminated since the emulated value for Euclidean div benefits from floored-div performing most of the heavy lifting on its behalf.
— The call to natural log function "(_ = log(_)) - _" is for
obtaining a proper IEEE-754 NaN derived from log(0) - log(0) := (-inf) - (-inf)
So while this function isn't exactly Javascript per se, it's generic enough it should easily be portable to any language.
%is not the modulo operator. It's the remainder operator. There is no modulo operator in JavaScript. So the accepted answer is the way to go.