have 2 datasets, for the first data set i want to apply convolution and keep the result of flatten layyer then concatenate it with an other data set and a do a simple feed forward it is possible with keras ?
def build_model(x_train,y_train):
np.random.seed(7)
left = Sequential()
left.add(Conv1D(nb_filter= 6, filter_length=3, input_shape= (48,1),activation = 'relu', kernel_initializer='glorot_uniform'))
left.add(Conv1D(nb_filter= 6, filter_length=3, activation= 'relu'))
#model.add(MaxPooling1D())
print model
#model.add(Dropout(0.2))
# flatten layer
#https://www.quora.com/What-is-the-meaning-of-flattening-step-in-a-convolutional-neural-network
left.add(Flatten())
left.add(Reshape((48,1)))
right = Sequential()
#model.add(Reshape((48,1)))
# Compile model
model.add(Merge([left, right], mode='sum'))
model.add(Dense(10, 10))
epochs = 100
lrate = 0.01
decay = lrate/epochs
sgd = SGD(lr=lrate, momentum=0.9, decay=decay, nesterov=False)
#clipvalue=0.5)
model.compile(loss='mean_squared_error', optimizer='Adam')
model.fit(x_train,y_train, nb_epoch =epochs, batch_size=10, verbose=1)
#model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy'] , )
return model