You could make a bar chart:
import pandas as pd
import matplotlib.pyplot as plt
df = pd.DataFrame({'my_1': [5, 3, 1, 12, 6], 'my_2': [7, 5, 2, 9, 1], 'my_3': [4, 13, 8, 9, 2]})
df.T.plot(kind='bar')
plt.show()

or a scatter plot:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
df = pd.DataFrame({'my_1': [5, 3, 1, 12, 6], 'my_2': [7, 5, 2, 9, 1], 'my_3': [4, 13, 8, 9, 2]})
fig, ax = plt.subplots()
cols = np.arange(len(df.columns))
x = np.repeat(cols, len(df))
y = df.values.ravel(order='F')
color = np.tile(np.arange(len(df)), len(df.columns))
scatter = ax.scatter(x, y, s=150, c=color)
ax.set_xticks(cols)
ax.set_xticklabels(df.columns)
cbar = plt.colorbar(scatter)
cbar.set_ticks(np.arange(len(df)))
plt.show()

Just for fun, here is how to make the same scatter plot using Pandas' df.plot:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
df = pd.DataFrame({'my_1': [5, 3, 1, 12, 6], 'my_2': [7, 5, 2, 9, 1], 'my_3': [4, 13, 8, 9, 2]})
columns = df.columns
index = df.index
df = df.stack()
df.index.names = ['color', 'column']
df = df.rename('y').reset_index()
df['x'] = pd.Categorical(df['column']).codes
ax = df.plot(kind='scatter', x='x', y='y', c='color', colorbar=True,
cmap='viridis', s=150)
ax.set_xticks(np.arange(len(columns)))
ax.set_xticklabels(columns)
cbar = ax.collections[-1].colorbar
cbar.set_ticks(index)
plt.show()
Unfortunately, it requires quite a bit of DataFrame manipulation just to call
df.plot and then there are some extra matplotlib calls needed to set the tick
marks on the scatter plot and colorbar. Since Pandas is not saving effort here,
I would go with the first (NumPy/matplotlib) approach shown above.