2

I have a dataframe as below

df = pd.DataFrame({'a':[1,1,1,2,2,2], 
                   'b': [10, 20, 30, 20, 40, 60],
                  'c': [80, 80, 80, 120, 120, 120]})

I want to get 3D array

array([[[  1,  10,  80],
       [  2,  20, 120] ],

       [[  1,  20,  80] ,
       [  2,  40, 120] ],

       [[  1,  30,  80],
        [  2,  60, 120]]], dtype=int64)

I do like this

values = df.values
values.reshape(3, 2, 3)

and get an incorrect array. How to get the expected array?

2 Answers 2

4

Get the array data, then reshape splitting the first axis into two with the first of them being of length 2 giving us a 3D array and then swap those two axes -

df.values.reshape(2,-1,df.shape[1]).swapaxes(0,1)

Sample run -

In [711]: df
Out[711]: 
   a   b    c
0  1  10   80
1  1  20   80
2  1  30   80
3  2  20  120
4  2  40  120
5  2  60  120

In [713]: df.values.reshape(2,-1,df.shape[1]).swapaxes(0,1)
Out[713]: 
array([[[  1,  10,  80],
        [  2,  20, 120]],

       [[  1,  20,  80],
        [  2,  40, 120]],

       [[  1,  30,  80],
        [  2,  60, 120]]])

This gives us a view into the original data without making a copy and as such has a minimal constant time.

Runtime test

Case #1 :

In [730]: df = pd.DataFrame(np.random.randint(0,9,(2000,100)))

# @cᴏʟᴅsᴘᴇᴇᴅ's soln
In [731]: %timeit np.stack(np.split(df.values, 2), axis=1)
10000 loops, best of 3: 109 µs per loop

In [732]: %timeit df.values.reshape(2,-1,df.shape[1]).swapaxes(0,1)
100000 loops, best of 3: 8.55 µs per loop

Case #2 :

In [733]: df = pd.DataFrame(np.random.randint(0,9,(2000,2000)))

# @cᴏʟᴅsᴘᴇᴇᴅ's soln
In [734]: %timeit np.stack(np.split(df.values, 2), axis=1)
100 loops, best of 3: 4.3 ms per loop

In [735]: %timeit df.values.reshape(2,-1,df.shape[1]).swapaxes(0,1)
100000 loops, best of 3: 8.37 µs per loop
Sign up to request clarification or add additional context in comments.

1 Comment

Always knew yours was going to be faster. ;-) +1
3

Try np.split + np.stack:

np.stack(np.split(df.values, 2), axis=1)

array([[[  1,  10,  80],
        [  2,  20, 120]],

       [[  1,  20,  80],
        [  2,  40, 120]],

       [[  1,  30,  80],
        [  2,  60, 120]]])

Comments

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.