I am currently working on a program to evaluate the out-of-sample performance of several forecasting models on simulated data. For those who are familiar with finance, it works exactly like backtesting a trading strategy, except that I would evaluate forecasts and not transactions.
Some of the objects I currently manipulate using for loops for this type of task are 7 dimensional arrays (dimensions stand for Monte Carlo replications, data generating processes, forecast horizons, 3 dimensions for model parameter selection, and one dimension for all the periods covered in the out-of-sample analysis). Obviously, it is painfully slow, so parallel computing has became a must for me.
My problem is: how do I keep track of more than 2 dimensions in R? Let's just show you using 'for loops' and only 3 dimensions what I mean:
x <- array(dim=c(2,2,2))
for (i in 1:2){
for (j in 1:2){
for (k in 1:2){
x[i,j,k] <- i+j+k
}
}
}
If I use something like 'foreach', I am very annoyed by the fact that, to my knowledge, available combining functionalities will return lists, matrices or vectors -- but not arbitrarily large multidimensional arrays. For instance:
library(doParallel)
library(foreach)
# Get the number of cores to use
no_cores <- max(1, detectCores()-1)
# Make cluster object using no_cores
cl <- makeCluster(no_cores)
# Initialize cluster for parallel computing
registerDoParallel(cl)
x <- foreach(i=1:2, .combine=rbind)%:%
foreach(j=1:2, .combine=cbind)%:%
foreach(k=1:2, .combine=c)%dopar%{
i+j+k
}
Here, I basically combine results into vectors, then matrices and, finally, I pile up matrices by rows. Another option would be to use lists, or pile matrices through columns, but you can imagine the mess when you have 7 dimensions and millions of iterations to track.
I suppose I could also write my own 'combine' function and get the kind of output I want, but I suspect that I am not the first person to encounter this problem. Either there is a way to do exactly what I want, or someone here can point out a way to think differently about storing my results. It wouldn't be surprising that I am taking an absurdly inefficient path toward solving this problem -- I am an economist, not a data scientist, after all!
Any help would be greatly appreciated. Thanks in advance.