I have gone through the posts that are similar to filling out the multiple columns for pandas in one go, however it appears that my problem here is a little different, in the sense that I need to be able to populate a missing column value with a specific column value and be able to do that for multiple columns in one go.
Eg: I can use the commands as below individually to fill the NA's
result1_copy['BASE_B'] = np.where(pd.isnull(result1_copy['BASE_B']), result1_copy['BASE_S'], result1_copy['BASE_B'])
result1_copy['QWE_B'] = np.where(pd.isnull(result1_copy['QWE_B']), result1_copy['QWE_S'], result1_copy['QWE_B'])
However, if I were to try populating it one go, it does not work:
result1_copy['BASE_B','QWE_B'] = result1_copy['BASE_B', 'QWE_B'].fillna(result1_copy['BASE_S','QWE_S'])
Do we know why ? Please note I have only used 2 columns here for ease of purpose, however I have 10s of columns to impute. And they are either object, float or datetime. Is datatypes the issue here ?