I am experimenting with Python to fit curves to a series of data-points, summary below:
From the below, it would seem that polynomials of order greater than 2 are the best fit, followed by linear and finally exponential which has the overall worst outcome.
While I appreciate this might not be exponential growth, I just wanted to know whether you would expect the exponential function perform so badly (basically the coefficient of x,b, has been set to 0 and an arbitrary point has been picked on the curve to intersect) or if I have somehow done something wrong in my code to fit.
The code I'm using to fit is as follows:
# Fitting
def exponenial_func(x,a,b,c):
return a*np.exp(-b*x)+c
def linear(x,m,c):
return m*x+c
def quadratic(x,a,b,c):
return a*x**2 + b*x+c
def cubic(x,a,b,c,d):
return a*x**3 + b*x**2 + c*x + d
x = np.array(x)
yZero = np.array(cancerSizeMean['levelZero'].values)[start:]
print len(x)
print len(yZero)
popt, pcov = curve_fit(exponenial_func,x, yZero, p0=(1,1,1))
expZeroFit = exponenial_func(x, *popt)
plt.plot(x, expZeroFit, label='Control, Exponential Fit')
popt, pcov = curve_fit(linear, x, yZero, p0=(1,1))
linearZeroFit = linear(x, *popt)
plt.plot(x, linearZeroFit, label = 'Control, Linear')
popt, pcov = curve_fit(quadratic, x, yZero, p0=(1,1,1))
quadraticZeroFit = quadratic(x, *popt)
plt.plot(x, quadraticZeroFit, label = 'Control, Quadratic')
popt, pcov = curve_fit(cubic, x, yZero, p0=(1,1,1,1))
cubicZeroFit = cubic(x, *popt)
plt.plot(x, cubicZeroFit, label = 'Control, Cubic')
*Edit: curve_fit is imported from the scipy.optimize package
from scipy.optimize import curve_fit

xapproaches positive infinity. In other words, it looks more like1/x, notx.