Tail recursive solution
(defun split (n l &optional (acc-l '()))
(cond ((null l) (list (reverse acc-l) ()))
((>= 0 n) (list (reverse acc-l) l))
(t (split (1- n) (cdr l) (cons (car l) acc-l)))))
Improved version
(in this version, it is ensured that acc-l is at the beginning '()):
(defun split (n l)
(labels ((inner-split (n l &optional (acc-l '()))
(cond ((null l) (list (reverse acc-l) ()))
((= 0 n) (list (reverse acc-l) l))
(t (inner-split (1- n) (cdr l) (cons (car l) acc-l))))))
(inner-split n l)))
Test it:
(split 3 '(1 2 3 4 5 6 7))
;; returns: ((1 2 3) (4 5 6 7))
(split 0 '(1 2 3 4 5 6 7))
;; returns: (NIL (1 2 3 4 5 6 7))
(split 7 '(1 2 3 4 5 6 7))
;; returns ((1 2 3 4 5 6 7) NIL)
(split 9 '(1 2 3 4 5 6 7))
;; returns ((1 2 3 4 5 6 7) NIL)
(split -3 '(1 2 3 4 5 6 7))
;; returns (NIL (1 2 3 4 5 6 7))
In the improved version, the recursive function is placed one level deeper (kind of encapsulation) by using labels (kind of let which allows definition of local functions but in a way that they are allowed to call themselves - so it allows recursive local functions).
How I came to the solution:
Somehow it is clear, that the first list in the result must result from consing one element after another from the beginning of l in successive order. However, consing adds an element to an existing list at its beginning and not its end.
So, successively consing the car of the list will lead to a reversed order.
Thus, it is clear that in the last step, when the first list is returned, it hast to be reversed. The second list is simply (cdr l) of the last step so can be added to the result in the last step, when the result is returned.
So I thought, it is good to accumulate the first list into (acc-l) - the accumulator is mostly the last element in the argument list of tail-recursive functions, the components of the first list. I called it acc-l - accumulator-list.
When writing a recursive function, one begins the cond part with the trivial cases. If the inputs are a number and a list, the most trivial cases - and the last steps of the recursion, are the cases, when
- the list is empty
(equal l '()) ---> (null l)
- and the number is zero ---->
(= n 0) - actually (zerop n). But later I changed it to (>= n 0) to catch also the cases that a negative number is given as input.
(Thus very often recursive cond parts have null or zerop in their conditions.)
When the list l is empty, then the two lists have to be returned - while the second list is an empty list and the first list is - unintuitively - the reversed acc-l.
You have to build them with (list ) since the list arguments get evaluated shortly before return (in contrast to quote = '(...) where the result cannot be evaluated to sth in the last step.)
When n is zero (and later: when n is negative) then nothing is to do than to return l as the second list and what have been accumulated for the first list until now - but in reverse order.
In all other cases (t ...), the car of the list l is consed to the list which was accumulated until now (for the first list): (cons (car l) acc-l) and this I give as the accumulator list (acc-l) to split and the rest of the list as the new list in this call (cdr l) and (1- n). This decrementation in the recursive call is very typical for recursive function definitions.
By that, we have covered all possibilities for one step in the recursion.
And that makes recursion so powerful: conquer all possibilities in ONE step - and then you have defined how to handle nearly infinitely many cases.
Non-tail-recursive solution
(inspired by Dan Robertson's solution - Thank you Dan! Especially his solution with destructuring-bind I liked.)
(defun split (n l)
(cond ((null l) (list '() '()))
((>= 0 n) (list '() l))
(t (destructuring-bind (left right) (split (1- n) (cdr l))
(list (cons (car l) left) right)))))
And a solution with only very elementary functions (only null, list, >=, let, t, cons, car, cdr, cadr)
(defun split (n l)
(cond ((null l) (list '() '()))
((>= 0 n) (list '() l))
(t (let ((res (split (1- n) (cdr l))))
(let ((left-list (car res))
(right-list (cadr res)))
(list (cons (car l) left-list) right-list))))))