Straight forward Python file write:
In [116]: with open('test','w') as f:
...: print(' date item', file=f)
...: for t in alist:
...: print('%s %s'%t, file=f)
...:
In [117]: cat test
date item
2000-04-01 pie
2000-04-01 apple
2000-04-01 orange
2000-04-01 mango
2000-04-01 pears
The key is that str(np.datetime64('2000-04-01') is formatted as you want.
And object dtype array can be written with savetxt with the right fmt:
In [121]: arr = np.array(alist)
In [122]: arr
Out[122]:
array([[numpy.datetime64('2000-04-01'), 'pie'],
[numpy.datetime64('2000-04-01'), 'apple'],
[numpy.datetime64('2000-04-01'), 'orange'],
[numpy.datetime64('2000-04-01'), 'mango'],
[numpy.datetime64('2000-04-01'), 'pears']], dtype=object)
In [123]: np.savetxt('test', arr, fmt='%s', delimiter=',', header='date item')
In [124]: cat test
# date item
2000-04-01,pie
2000-04-01,apple
2000-04-01,orange
2000-04-01,mango
2000-04-01,pears
I could also create a structured array and write that with savetxt
In [125]: arr = np.array(alist, dtype='datetime64[D], U10')
In [126]: arr
Out[126]:
array([('2000-04-01', 'pie'), ('2000-04-01', 'apple'),
('2000-04-01', 'orange'), ('2000-04-01', 'mango'),
('2000-04-01', 'pears')], dtype=[('f0', '<M8[D]'), ('f1', '<U10')])
In [127]: np.savetxt('test', arr, fmt='%s', delimiter=', ', header='date item
...: ')
In [128]: cat test
# date item
2000-04-01, pie
2000-04-01, apple
2000-04-01, orange
2000-04-01, mango
2000-04-01, pears
to_csvmethod.csvmodule works fine too, without pandas