I have a column with datetime.datetime objects as its contents. I'm trying to use pyspark.sql.Window functionality, which requires a numeric type, not datetime or string. So my plan is to convert the datetime.datetime object to a UNIX timestamp:
Setup:
>>> import datetime; df = sqlContext.createDataFrame(
... [(datetime.datetime(2018, 1, 17, 19, 0, 15),),
... (datetime.datetime(2018, 1, 17, 19, 0, 16),)], ['dt'])
>>> df
DataFrame[dt: timestamp]
>>> df.dtypes
[('dt', 'timestamp')]
>>> df.show(5, False)
+---------------------+
|dt |
+---------------------+
|2018-01-17 19:00:15.0|
|2018-01-17 19:00:16.0|
+---------------------+
Define a function to access the timestamp function of a datetime.datetime object:
def dt_to_timestamp():
def _dt_to_timestamp(dt):
return int(dt.timestamp() * 1000)
return func.udf(_dt_to_timestamp)
Apply that function:
>>> df = df.withColumn('dt_ts', dt_to_timestamp()(func.col('dt')))
>>> df.show(5, False)
+---------------------+-------------+
|dt |dt_ts |
+---------------------+-------------+
|2018-01-17 19:00:15.0|1516237215000|
|2018-01-17 19:00:16.0|1516237216000|
+---------------------+-------------+
>>> df.dtypes
[('dt', 'timestamp'), ('dt_ts', 'string')]
I'm not sure why this column defaults to string when the inner _dt_to_timestamp function returns an int, but let's try to cast these "string-integers" to IntegerTypes:
>>> df = df.withColumn('dt_ts', func.col('dt_ts').cast(IntegerType()))
>>> df.show(5, False)
+---------------------+-----+
|dt |dt_ts|
+---------------------+-----+
|2018-01-17 19:00:15.0|null |
|2018-01-17 19:00:16.0|null |
+---------------------+-----+
>>> df.dtypes
[('dt', 'timestamp'), ('dt_ts', 'int')]
This seems to be only an issue for IntegerType coercion. For DoubleTypes, the conversion works, but I'd prefer integers...
>>> df = df.withColumn('dt_ts', dt_to_timestamp()(func.col('dt')))
>>> df = df.withColumn('dt_ts', func.col('dt_ts').cast(DoubleType()))
>>> df.show(5, False)
+---------------------+--------------+
|dt |dt_ts |
+---------------------+--------------+
|2018-01-17 19:00:15.0|1.516237215E12|
|2018-01-17 19:00:16.0|1.516237216E12|
+---------------------+--------------+