I have 2 Pandas dfs, A and B , with some matching columns but different number of rows. I want to copy values of matching columns from B to A based on some conditions. I have tried this:
s1 = pd.Series([5, 1, 'a'])
s2 = pd.Series([6, 2, 'b'])
s3 = pd.Series([7, 3, 'd'])
s4 = pd.Series([8, 4, 'e'])
s5 = pd.Series([9, 5, 'f'])
df1 = pd.DataFrame([list(s1), list(s2),list(s3),list(s4),list(s5)], columns = ["A", "B", "C"])
s1 = pd.Series([5, 6, 'p'])
s2 = pd.Series([6, 7, 'q'])
s3 = pd.Series([7, 8, 'r'])
s4 = pd.Series([8, 9, 's'])
s5 = pd.Series([9, 10, 't'])
df2 = pd.DataFrame([list(s1), list(s2),list(s3),list(s4),list(s5)], columns = ["A", "B", "C"])
df1.loc[df1.A.isin(df2.A), ['B', 'C']] = df2[['B', 'C']]
print (df1)
A B C
0 5 6 p
1 6 7 q
2 7 8 r
3 8 9 s
4 9 10 t
This works when the number of rows are same, but if B has fewer rows, the index is not aligned and i get NaN in the final df. For example, df2 has one fewer rows and the row indexes are not aligned
df2 = pd.DataFrame([list(s1), list(s2),list(s4),list(s5)], columns = ["A", "B", "C"])
df1.loc[df1.A.isin(df2.A), ['B', 'C']] = df2[['B', 'C']]
print (df1)
A B C
0 5 6.0 p
1 6 7.0 q
2 7 8.0 r
3 8 10.0 t
4 9 NaN NaN
How to do this and copy the value if the values in columns A are same ?