I have a dataframe: yearDF obtained from reading an RDBMS table on Postgres which I need to ingest in a Hive table on HDFS.
val yearDF = spark.read.format("jdbc").option("url", connectionUrl)
.option("dbtable", s"(${execQuery}) as year2017")
.option("user", devUserName)
.option("password", devPassword)
.option("numPartitions",10)
.load()
Before ingesting it, I have to add a new column: delete_flag of datatype: IntegerType to it. This column is used to mark a primary-key whether the row is deleted in the source table or not.
To add a new column to an existing dataframe, I know that there is the option: dataFrame.withColumn("del_flag",someoperation) but there is no such option to specify the datatype of new column.
I have written the StructType for the new column as:
val delFlagColumn = StructType(List(StructField("delete_flag", IntegerType, true)))
But I don't understand how to add this column with the existing dataFrame: yearDF. Could anyone let me know how to add a new column along with its datatype, to an existing dataFrame ?
someoperationreturns aColumntype, I believe the data type should be inferred. Ifsomeoperationgenerates a literalInteger, just wrap it in alit()call, to make it aColumn.